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1 Introduction

Measuring the welfare costs of inflation in dynamic general equilibrium models is, at this

point, well-trod territory. By way of example, the early work of Cooley and Hansen (1989)

placed the costs of a 10% inflation at around 0.5% of consumption, measured relative to

the Friedman rule optimum. With but a few notable exceptions, discussed later in this

introduction, estimates of the costs of inflation have been made within the representative

agent framework. For many macroeconomic issues, the representative agent fiction is a useful

one. For example, Ŕıos-Rull (1996) showed that for understanding aggregate business cycle

phenomena, the life-cycle is largely irrelevant. The basic question asked in this paper is,

“How do the costs of inflation change when agents differ by age?” For the model analyzed

in this paper, a life-cycle version of the Cooley and Hansen, the answer is, “Quite a bit.”

More specifically, the optimal inflation rate (the one maximizing steady state lifetime utility

of a newborn) is quite high – over 20%. Before giving some intuition for why high inflation

is optimal, it will help to know the model’s key features.

First, as in Cooley and Hansen (1989), money is held in order to satisfy a cash-in-advance

constraint on purchases of the consumption good. Second, as is common in the monetary lit-

erature, money injections occur via lump-sum transfers (so-called helicopter drops of money).

Third, individuals live exactly T periods; there is no random death as in Ŕıos-Rull (1996).

Fourth, individuals start life with no capital (real assets), and must end their lives with

non-negative capital holdings. Since there is no bequest motive, individuals will, in fact, end

life with no capital. Between birth and death, individual are unconstrained with respect to

their capital holdings, and so may go into debt if they wish. Finally, individuals start life

with some real money balances. This feature is included so that there is not a ‘trivial’ reason

for inflation to be welfare-improving: Suppose individuals have no initial real balances, then

if there is no lump-sum transfer of money balances, the cash-in-advance constraint implies

that individuals would be unable to purchase consumption in the first period of their lives.

So that money is not simply created “out of thin air,” it is assumed that agents end life with
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the same level of real balances with which they started.

Why is the optimal steady state inflation rate so high? A key feature of the calibrated

model is that utility increases with age; with utility separable between consumption and

leisure, both consumption and leisure also increase with age. The cash-in-advance constraint

implies that in order to finance this increasing profile for consumption, real money balances

must also rise with age. Inflation acts as a tax on old, rich agents, and the lump-sum

injections of money transfer resources to young, poor agents. To understand why house-

holds prefer a flatter age-utility profile, consider the problem of a planner who maximizes a

weighted sum of utility of all generations, including the unborn; this problem is discussed

in more detail in Section 4. Suppose that the planner discounts each generation’s lifetime

utility using the same discount factor used by households; then the steady state profiles for

utility, consumption and leisure are all constant provided preferences are separable between

consumption and leisure. In other words, at least in steady state, flatter age-profiles for

consumption, leisure and utility are desirable.

However, inflation introduces a distortion to the labor-leisure choice owing to the fact

that current income cannot be spent on consumption goods in the same period in which

the income is earned. There are, then, two effects associated with inflationary finance of

lump-sum injections of money: (1) the flatter age-utility profile which raises steady state

lifetime utility of the newly born, and (2) the distortions to the labor-leisure choice. For

the calibrated model, the first effect dominates up to an annual inflation rate of 23%. For

this inflation rate, the welfare gain computed in steady state for a newborn agent is 0.1% of

consumption.

The intuition underlying the above results is summarized in Figure 1. In order to produce

a relatively simple figure, the rich life-cycle structure of the model is reduced to consumption

when young and consumption when old, and leisure is suppressed. Point A corresponds to

the 5% inflation steady state (the U.S. historical average) and reflects the observation that

in the model, consumption is rising with age. Point B, the 23% steady state, is obtained
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Figure 1: Intuition
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as follows. First, the combination of higher inflation and associated lump-sum transfers

rotates the budget line since this higher inflation rate is associated with higher consumption

when young, and lower consumption when old. Second, the budget line shifts in reflecting the

deleterious effects of inflation on hours worked. As drawn, the new steady state consumption

allocation places households on a higher indifference curve.

The model’s results are driven by the fact that consumption, leisure and utility all increase

with age. To understand why consumption rises over the life-cycle, it is easier to consider

the non-monetary version of the model. When consumption and leisure are separable in

preferences, as they are in the model, the intertemporal Euler equation governing real asset

accumulation relates the growth rate of consumption over the life-cycle to the product of the

discount factor and the gross real interest rate. The model is calibrated to a conventional

value of the real interest rate, 4% per annum. The resulting value for the discount factor

implies that the aforementioned product is greater than one, and so consumption rises with

age. The intratemporal Euler equation then delivers a rising pattern to leisure, and finally

utility.

3



Figure 1 also helps to explain why households do not achieve a greater degree of utility

smoothing on their own. After all, households are free to go into debt. However, if they

do so, they need to repay that debt at the real interest rate – in steady state, 4% per

annum. The government, though, faces more of a one-for-one trade-off between young and

old consumption. Roughly speaking, private households face a budget constraint associated

with point A while the government faces a feasibility constraint associated with point B.

Transferring resources from the initial old to younger agents does not yield a Pareto

superior allocation as can be seen in Figure 1. In particular, the utility of the initial old falls.

To assess the magnitude of this problem, the transition path associated with a permanent,

unanticipated change from 5% inflation, the U.S. average, to 23% is computed. A small

fraction – only 14% – of those alive at the time of the policy change are made better off.

It also takes a long time – over 40 years – before there is a measured welfare benefit. The

overall welfare cost of such a policy change is found to be around 0.1% of consumption.

As mentioned earlier, there are two other notable papers that assess the importance of

heterogeneity in measuring the costs of inflation: İmrohoroğlu (1992) and Erosa and Ventura

(2002). The environment considered by İmrohoroğlu is one in which individuals hold money

balances as a buffer against uninsurable income shocks (spells of unemployment). Her key

result is that Bailey welfare triangles understate the costs of inflation by as much as a factor

of 3. Erosa and Ventura’s model has two types of agents, rich and poor. They allow for an

endogenous cash-credit good distinction. Their model is calibrated to match observations

for the United States, which implies that the poor purchase a greater proportion of their

goods with cash, and so experience a greater burden of the inflation tax.

The remainder of the paper is organized as follows. The model is presented in Section 2,

and calibrated in Section 3. Welfare results for the model economy can be found in Section 4.

Transition dynamics are explored in Section 5. Section 6 concludes.
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2 The Economic Environment

2.1 Households

At each date t a unit mass of identical individuals is ‘born’. Each individual experiences

exactly T periods of ‘economic life.’ The term economic life is used to refer to individuals

who have entered the labor force and so participate in economic activity. Early childhood

development and education are not considered here. Altruism between parents and their

offspring is also suppressed. In order to analyze fairly realistic life-cycle dynamics, the

lifespan T will be long. In the calibration section, a period will be specified as one quarter,

and T will be set to 220, corresponding to 55 years of economic life.

Since individuals differ only as to their date of birth, individual-specific variables need

to specify an individual’s date of birth, and their current period of life. By way of example,

nit denotes the hours of work of an individual born at date t who is in their ith period of life.

In calendar time, these hours are supplied at date t+ i.

Preferences for a member of generation t (that is, someone born at t) are given by:

Et

T−1∑
i=0

βiU(cit, `
i
t), β > 0.

The period utility function, U , is defined over consumption, cit, and leisure, `it, and is assumed

to possess standard properties. Future utility is discounted at the rate β.

Households face a number of constraints. To start, the nominal budget constraint is

Pt+ic
i
t + Pt+i[k

i+1
t − (1− δ)kit] +M i+1

t =

Wt+in
i
t +Rt+ik

i
t +M i

t +Xt+i, i = 0, . . . , T − 1.

(1)

The right-hand side gives sources of funds. At age i, an individual supplies time to the

market, nit, earning a wage Wt+i. The second term on the right-hand side of Eq. (1) is

capital income. The household starts period t + i with real assets (or capital) kit. It rents

this capital for a nominal rental payment of Rt+i. The household also starts period t + i
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with money balances, M i
t . It receives a lump-sum transfers from the government, Xt+i.

The left-hand side of Eq. (1) represents uses of funds. The first term is nominal purchases

of consumption goods. The household expends funds investing in capital, given by the second

term on the left-hand side. Here, δ is the depreciation rate of capital. Negative investment is

permitted and corresponds to a change in ownership in capital goods. Finally, the household

departs period t+ i with nominal money balances M i+1
t .

The household faces a standard cash-in-advance constraint:

Pt+ic
i
t ≤M i

t +Xt+i, i = 0, . . . , T − 1. (2)

The term on the left-hand side of the cash-in-advance constraint is the value of consumption.

These purchases are constrained by the sum of beginning-of-period money balances and the

monetary lump-sum payment from the government, Xt+i.

The time endowment of an individual is normalized to unity; thus, labor and leisure must

satisfy

`it + nit ≤ 1, i = 0, . . . , T − 1.

The only constraints that will be placed on capital holdings are that individuals start life

with no capital, and they must end life with non-negative capital:

k0t = 0, kTt ≥ 0. (3)

ki+1
t < 0 means that at age i a member of generation t went into debt.

The final two constrains are on money holdings. It is assumed that individuals start life

with real balances, m > 0, and must end life with the same level of money balances:

M0
t

Pt−1
= m,

MT
t

Pt+T−1
≥ m. (4)

If m = 0, then the cash-in-advance constraint, Eq. (2), would imply that positive first period

of life consumption is feasible only if the transfer, Xt, is strictly positive. This transfer can be

strictly positive only if money growth, and so inflation, is strictly positive. Absent positive
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initial money balances there would be a trivial reason for positive inflation to dominate

the Friedman rule (deflate at the real interest rate) since this would be the only way for

individuals to enjoy positive first period consumption.

The initial real balances could be thought of as a transfer made from a parent to an

offspring, or as coming from income of a child prior to entering the labor force. The constraint

on end-of-life real balances is imposed to conserve on aggregate private money balances

(money balances are not being magically introduced through the endowment of the just-

born).

Most of the constraints faced by an individual are satisfied owing to nonsatiation. The

cash-in-advance constraint binds if inflation is sufficiently high to ensure that the return on

capital exceeds that on money (so that no one would hold money as a store of value). It is

assumed that this condition is, in fact, satisfied.

2.2 Goods Producing Firms

Firms face a sequence of static problems. Each period, the typical firm rents capital, Kt,

and hires labor, Nt, to maximize real profits,

PtF(Kt, Nt; zt)−RtKt −WtNt, (5)

where F is a standard constant-returns-to-scale production function and zt is a shock to

technology. Since F is constant-returns-to-scale, in equilibrium firms will earn zero profits.

Consequently, there is no need to tackle the tricky issue of firm ownership when specifying

the households’ problems.
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2.3 Government

The only role for government is to create (or destroy) money balances that are distributed

lump-sum to households. The government’s budget constraint is

Xt =
(µt − 1)Mt

T
(6)

where µt is the gross growth rate of money, Mt is aggregate money balances, and T is the

number of generations alive at t. Consequently, each generation receives its ‘share’ of new

money balances.

2.4 Competitive Equilibrium

A competitive equilibrium for this economy is defined in the usual way:

(1) Each member of cohort t chooses contingency plans for consumption, hours of work,

capital and money holdings, so as to maximize lifetime utility taking as given the process

generating prices and the evolution of the aggregate state.

(2) Firms maximize period-by-period profits taking as given prices.

(3) The government satisfies its budget constraint.

(4) Markets clear:

Kt =
T−1∑
i=0

kit−i,

Nt =
T−1∑
i=0

nit−i,

Mt+1 =
T−1∑
i=0

M i+1
t−i ,

T−1∑
i=0

cit−i︸ ︷︷ ︸
Ct

+
T−1∑
i=0

[
ki+1
t−i − (1− δ)kit−i

]
︸ ︷︷ ︸

It

= F(Kt, Nt; zt)
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In the market clearing conditions the summations are across individuals alive at date t.

By way of example, cit−i is the consumption at date t of a typical member of cohort t− i; at

time t, this individual is aged i.

2.5 The Pareto Problem

For future reference, it will be useful to characterize the allocation that would be chosen

by a planner. Attention will be focused on steady state life-cycle profiles; to ease notation,

uncertainty is suppressed. Given a set of weights attached to each generation, {ωt}∞t=−T+1,

the planner chooses sequences for consumption, hours of work, and aggregate capital to

maximize
−1∑

t=−T+1

ωt

[
T−1∑
i=T+t

βiU(cit, 1− nit)

]
+
∞∑
t=0

ωt

[
T−1∑
i=0

βiU(cit, 1− nit)

]
subject to

T−1∑
i=0

cit−i +Kt+1 = F

(
Kt,

T−1∑
i=0

nit−i

)
+ (1− δ)Kt, t = 0, 1, 2, . . .

The first sum in the objective function corresponds to the remaining utility of generations

born before t = 0 while the second sum is utility of generations born at or after t = 0. The

constraint merely reflects feasibility.

Assume that the weight attached to generation t is given by ωt = βt; in other words, the

planner discounts utility of each generation by the same discount factor used by households.

Taking first-order conditions and focusing on steady state, the following equations must be

satisfied:1

U`(c
i, 1− ni) = Uc(c

i, 1− ni)Fn(K,N) (7)

1 = β [Fk(K,N) + 1− δ] (8)

Uc(c
i, 1− ni) = Uc(c

i+1, 1− ni+1). (9)

1See appendix A.3 for a detailed derivation.
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Eq. (8) determines the modified golden rule capital stock; Eq. (7) corresponds to the in-

tratemporal optimization condition associated with the non-monetary economy; and Eq. (9)

says that the planner wishes to equate the marginal utility of consumption over the life-cycle.

This last condition arises from the assumption that ωt = βt.

When utility is separable between consumption and leisure, Eq. (9) implies that con-

sumption is constant over the life-cycle. Eq. (7) then implies that labor is also constant over

the life-cycle. Consequently, the utility-age profile will be flat.2

3 Calibration

The length of a period is set to one quarter, and individuals live exactly 55 years; thus,

T = 220. By design, the calibration corresponds as closely as possible to Cooley and Hansen

(1989).

The period utility function is

U(c, `) = ln c+ ω ln `.

The goods production function is

F(K,N; z) = zKαN1−α.

The parameters governing production are taken from Gomme and Rupert (2007). The capital

share parameter, α, is set to 0.283 and corresponds to capital’s share of income from the

U.S. National Income and Product Accounts. The technology shock, zt, follows a first-order

autoregressive process,

ln zt = ρ ln zt−1 + εt, εt ∼ N(0, σ2
ε ).

Over the sample 1954–2001, Gomme and Rupert estimate ρ = 0.9641 and σ2
ε = 0.008164.

2İmrohoroğlu, İmrohoroğlu and Joines (1995) consider a planner’s problem in which the planner chooses
among steady state profiles to maximize lifetime utility subject to feasibility. Solving this problem leads to
a declining life-cycle profile for consumption and a rising profile for hours worked. The difference is that
İmrohoroğlu et al. in effect set ωt = 1 for all t.
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Table 1: Estimates of the Money Growth Process

Currency

µ 1.012362
ψ 0.8327293
Standard Error (0.0382036))
σ2
ξ 0.00446666

Sample 1954Q1–2003Q2

The depreciation rate for capital, δ, is set to 0.01777, implying an annual depreciation rate

of 6.9%, a value that corresponds closely to the average depreciation rate implicit in the

capital stock and depreciation data reported by the Bureau of Economic Analysis.

Money growth also follows a first-order autoregressive process,

µt = ψµt−1 + (1− ψ)µ+ ξt, ξt ∼ N(0, σ2
ξ )

where µ is the long run money growth rate. The parameters governing the behavior of money

growth are estimated from U.S. data on per capita currency. These parameter estimates are

summarized in Table 1. Over the sample period, average (quarterly) money growth has been

fairly low. The stochastic processes for the technology shock and money growth are assumed

to be uncorrelated. Running SUR on the Solow residual and per capita currency growth

gives similar parameter estimates to the above; the innovations have a correlation of 0.0936

which is not significantly different from zero.

There are two preference parameters that have yet to be assigned values: the discount

factor, β, and the leisure weight, ω. These parameters are set such that in steady state: (1)

the real interest rate is 4% per annum which is a typical value used in the real business cycle

literature;3 and, (2) households work, on average 0.255 of the time, a value consistent with

time-use surveys; see Gomme and Rupert (2007).

Finally, m, initial and final real money balances, are set to 0.4, which constrains first pe-

3The optimal inflation rate and size of the welfare benefit of positive inflation both increase with the real
interest rate.
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Table 2: Model Parameter Values

Preferences
β 0.9911 discount factor
ω 2.5003 labor-leisure weight
σ 1.0 coefficient of relative risk aversion
Technology
α 0.283 capital’s share of income
δ 0.0178 depreciation rate of capital
ρ 0.9643 technology shock, autoregressive parameter
σε 0.0082 standard deviation of innovation to technology shock
Money Growth
ψ 0.8329 autoregressive parameter
µ 1.0124 long run annual money growth rate
σu 0.0045 standard deviation of innovation to money growth
Other
T 220 number of periods of life
Calibration Targets

h 0.255 average hours worked
r 0.01 real interest rate (quarterly)

riod consumption; see Figure 2. This value for m is roughly 84% of first period consumption

for the non-monetary version of the model. The optimal inflation rate increases as m falls,

although the results are not too sensitive to this parameter.

The values of the parameters for the calibration are summarized in Table 2.

3.1 Steady State

The age-profiles of consumption, hours of work, capital (real assets) and utility are graphed

in Figure 2, along with the profiles corresponding to a non-monetary version of the model

(in which case all goods are effectively credit goods). The non-monetary steady state is

presented to verify that the introduction of money into the life-cycle model does not severely

alter the nature of the model’s steady state.

The consumption profile rises monotonically with age. It is, perhaps, easiest to under-

stand the shape of this profile in the non-monetary version of the model. In this case, one
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of the Euler equations is

Uc(c
i
t, 1− nit) = βEt+i

{
Uc(c

i+1
t , 1− ni+1

t )[1 + rt+i+1 − δ]
}
.

When preferences are logarithmic, in steady state this equation reads

ci+1

ci
= β[1 + r − δ]. (10)

The term in square brackets is the gross real interest rate which is fixed in the calibration

process (for the monetary steady state). It turns out that the product of the discount factor

and the gross real interest rate is larger than unity implying that individuals will chose a

path for consumption that grows over their lifetimes.

The profile for real money balances (not in Figure 2) corresponds closely to that of

consumption owing to the cash-in-advance constraint, and so also rises over the life-cycle.

While capital holdings are not constrained to be non-negative, households nonetheless choose

not to go into debt, saving until around chronological age 55 years (age 35 in the model, or

i = 140), after which they dissave. Since there is no bequest motive, individuals will end

their lives with no real assets. The age-profile of utility rises throughout the life-cycle.

The fact that the monetary and non-monetary steady states are so close to each other

suggests that money is not distorting individual behavior too much. This observation is not

too surprising in light of the modest money growth (and consequently inflation) rates; in the

model, money growth is calibrated to the growth rate of U.S. currency per capita, 5% per

annum.

3.2 Business Cycle Moments

Another litmus test for the model is whether its predictions for business cycle moments are

similar to those reported in the literature. Table 3 reports business cycle moments for the

U.S. economy, the monetary model, and the non-monetary model.

There are two important points. First, the model’s performance (whether monetary or
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non-monetary) is on par with that of standard real business cycle models (with a repre-

sentative, infinitely lived agent). This finding should not be too surprising since Ŕıos-Rull

(1996) found that an annual version of the life-cycle model generated business cycle moments

similar to that of the standard real business cycle model.

Second, adding money and money growth fluctuations has a fairly minor impact on the

model’s predictions for business cycle fluctuations. Cooley and Hansen (1989) made a similar

observation for a representative, infinitely lived agent model.

In summary, nothing in this section suggests that there is anything odd about the mon-

etary model.

4 Welfare Costs of Inflation

4.1 Lifetime Utility in Steady State

The criterion used for evaluating the desirability of money growth (or inflation) rates is steady

state lifetime utility of newborns. This is the same criterion used in, for example, the social

security literature; see İmrohoroğlu et al. (1995) and Huggett and Ventura (1999), among

others. This welfare measure corresponds exactly to the across-steady-state comparisons of

Cooley and Hansen (1989). Since steady state decisions differ across money growth rates,

index these decision rules by µ. Steady state lifetime utility, conditional on money growth

µ, can be expressed as:

V (µ) ≡
T−1∑
i=0

βiU [ci(µ), `i(µ)].

Figure 3c plots V (µ) against a range of money growth rates. Remarkably, steady state

lifetime utility is maximized at a money growth (inflation) rate of 23% per annum.4 By way

of contrast, in models with an infinitely-lived representative agent, like Cooley and Hansen

4A natural question is whether the extremely high inflation rate is the result of a programming error.
While computing the steady state is a computationally demanding task, verifying it is not. In particular,
the steady state quantities can be dumped into a file, imported into a spreadsheet, and the Euler equations
and other constraints can be verified by hand. Doing so reveals no errors in computing steady state.
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(1989), steady state utility is maximized by setting µ = β which implies a negative (net)

money growth rate. Such a money growth rate results in a zero nominal interest rate, a

result known as the ‘Friedman rule.’

As seen elsewhere in the literature, higher inflation (money growth) is associated with

diminished aggregate market activity; see Figures 3a and 3b. For example, Cooley and

Hansen (1989) find that an increase in the annual inflation rate from 0% to 10% lowers

aggregate output, consumption and hours by 2.3%; for the model, real activity falls by 1.7%.

That the steady state, lifetime utility-maximizing money growth rate is so high is even

more surprising given the similarity in the life-cycle profiles of consumption and leisure (hours

of work) across the monetary and non-monetary models’ steady states presented in Figure 2.

That is, money growth does not introduce a substantial distortion into the steady state of

the model.

To understand the results regarding the optimal money growth rate, recall that when

utility is separable between consumption and leisure, the solution to the Pareto problem

in Section 2.5 implies that consumption, leisure and utility are constant over the life-cycle.

Figure 4 presents life-cycle profiles for the calibrated money growth rate (5%) and the optimal

money growth rate (23%). Notice that the higher money growth (inflation) rate twists the

utility profile, making it flatter, bringing it closer to the solution to the Pareto problem.

Why should higher inflation lead to improved utility-smoothing over the life-cycle? Recall

that consumption (and, via the cash-in-advance constraint, real money balances) grows over

the life-cycle. Consequently, older agents pay a higher inflation tax than younger agents –

but the proceeds of the inflation tax are rebated independent of age. Figure 4d shows that

for the optimal inflation rate, net taxes paid – that is, the inflation tax paid less the lump-

sum transfer – are positive for old households while young households receive transfers on

net. In other words, inflation is a means of transferring resources from old, rich households

to young, poor ones.

Of course, there is a cost to inflation. As is standard in cash-in-advance models, inflation

17



Figure 3: Steady State Values Plotted Against Money Growth
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introduces a distortion into the labor supply decision since cash earned in the current period

cannot be spent until the subsequent period when inflation has eroded its purchasing power.

Figure 4a shows that, apart from the first period of life, the entire age profile of consumption

falls with inflation while Figure 4b shows that hours of work similarly falls at all ages. That

utility rises early in the life-cycle means that the increase in leisure (decline in labor) more

than offsets the decline in consumption.

One might think that households should be able to achieve, on their own, any utility-

smoothing that they desire since they are free to go into debt. It turns out that households

choose not to go into debt. However, suppose that they did go into debt; eventually, they

would have to repay this debt including interest. In a sense, the set of taxes and trans-

fers engineered by the government via money creation acts somewhat like the government

borrowing on behalf of the young at essentially a zero real interest rate. That is to say,

the government faces a different feasibility constraint than that implied by the sequence of

budget constraints confronting households.

Since the results in this paper are being driven by the rising life-cycle profile for con-

sumption and leisure, it is tempting to think that one can flatten out these profiles by

simply adjusting the discount factor, β. Here, the discipline of general equilibrium mod-

eling comes into play: the discount factor is not a ‘free parameter;’ it is calibrated along

with other parameters. Of course, one could choose a different calibration. In particular,

calibrating to a lower real interest rate will increase the calibrated value of β. The lower

real interest rate target requires a lower marginal product of capital, and so a higher capital

stock. In turn, households must be more patient in order to hold more capital, particularly

at a lower real interest rate. Both of these factors – lowering the steady state real interest

rate and raising the discount factor – will flatten the life-cycle profile of consumption as

suggested by Eq. (10). However, the real interest rate required to make the life-cycle profile

for consumption essentially flat is near zero – an empirically implausible value.5

5Another means of flattening the life-cycle profile of consumption is to introduce retirement.
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Figure 5: Welfare cost (benefit if negative) of various steady state money growth rates
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4.2 Welfare

The next task is to obtain a ‘unit free’ measure of how agents care about alternative inflation

(money growth) rates. A common approach in the literature is to find an ‘equivalent variation

payment’ – that is, how much consumption must be given to agents to make them indifferent

between two alternative money growth rates.

Welfare costs are expressed relative to a zero inflation rate. Let V (µ0) denote the lifetime

utility associated with a zero money growth rate. The welfare cost of inflation is given by

the age-independent value of λ(µ) that satisfies

T−1∑
i=0

βiU [(1 + λ(µ))ci(µ), `i(µ)] = V (µ0).

Table 4 and Figure 5 summarize the welfare calculations. The welfare-maximizing money

growth rate associated with the welfare cost calculation above conforms with the money

growth rate that maximizes lifetime utility. The largest welfare benefit (i.e., negative wel-

fare cost) occurs around 23% annual money growth rates. The welfare benefits are not

insignificant – around 0.1% of consumption.
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Table 4: Welfare Costs of Inflation

Inflation V W

−3.0 −145.0748 0.0339
−2.0 −145.0633 0.0220
−1.0 −145.0525 0.0107

0.0 −145.0422 0.0000
1.0 −145.0325 −0.0101
2.0 −145.0234 −0.0195
3.0 −145.0148 −0.0284
4.0 −145.0068 −0.0368
5.0 −144.9993 −0.0446
6.0 −144.9923 −0.0518
7.0 −144.9858 −0.0586
8.0 −144.9798 −0.0648
9.0 −144.9743 −0.0706

10.0 −144.9692 −0.0758
15.0 −144.9501 −0.0956
20.0 −144.9408 −0.1054
21.0 −144.9399 −0.1062
22.0 −144.9394 −0.1067
23.0 −144.9393 −0.1069
24.0 −144.9394 −0.1068
25.0 −144.9398 −0.1063
26.0 −144.9406 −0.1056
27.0 −144.9416 −0.1045
28.0 −144.9429 −0.1031
29.0 −144.9445 −0.1015
30.0 −144.9464 −0.0995
35.0 −144.9594 −0.0860
40.0 −144.9783 −0.0663
50.0 −145.0310 −0.0116
60.0 −145.1000 0.0601
70.0 −145.1821 0.1455
80.0 −145.2746 0.2418
90.0 −145.3754 0.3470

Notes: V is lifetime utility. W is the welfare cost as measured by the
constant fraction of consumption that must be added in each period of life
to leave a newborn indifferent between a particular inflation rate and 0%.

22



5 Transition Dynamics

As in the textbook overlapping generations model, in considering a policy change, one must

take into account what happens to the initial old, not just the newborns. The problem with

simply switching from the 5% steady state to the 23% steady state is that older agents are

made worse off. However, it is possible that gains of the younger agents are sufficiently

large that they could ‘bribe’ the older agents to accept this policy change. To investigate

this possibility, the welfare costs associated with the transition path following a permanent,

unanticipated increase in the money growth rate from 5%, the U.S. average, to 23% is

computed.

The welfare cost/benefit of this policy change is computed as follows. Let t = 0 be

the date of the policy change. For agents born at t ≥ 0, compute the fractional change in

consumption that leaves them indifferent between the old and new regime, as in Section 4.2.

For agents part way through their life-cycles at t = 0, compute the constant fraction of

consumption each period t ≥ 0 that leaves them indifferent between the two policies. To

obtain an overall metric of welfare at t ≥ 0, add all of the compensating variation changes

in consumption for that date and divide by total consumption at that date. This welfare

metric corresponds closely to that used in the steady state analysis, and is computed for

each period following the policy change.

The transition path is computed using decision rules log linearized around the 23% infla-

tion steady state, but with initial conditions given by the 5% inflation steady state. Figure 6

gives the effects on overall economic activity, where the responses are expressed as a percent-

age deviation from the 5% steady state. As in steady state, economic activity is depressed

by this increase in the inflation rate. Most of the transition dynamics have played out after

30 quarters (71
2

years).

Figure 7a plots lifetime utility of generations that experience the change in monetary

policy (the horizontal axis gives the birth date of each cohort). Generations born prior to

the policy change at t = 0 experience part of their lifetime under 5% money growth, then
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the remainder with 23% money growth which explains why lifetime utility of generations

t < 0 changes (in particular, the horizontal axis does not measure calendar time). Figure 7a

shows that over 86% of the generations that are alive at the time of the policy change are

made worse off. In fact, it is only agents born roughly 30 quarters prior to the change who

are made better off. Consequently, as reflected in Figure 7b (where the horizontal axis is

in calendar time), there is an initial welfare cost of switching to an inflation rate of 23%

– roughly 0.3% of aggregate consumption in the period that the policy is implemented. It

also takes a fairly long time – over 120 quarters, or 40 years – before a welfare benefit is

measured. The welfare benefit eventually overshoots its long run value of roughly 0.06% of

aggregate consumption.6

The overall welfare cost of the policy change analyzed in this section is computed as

follows. Calculate the present value of all of the equivalent variation payments (as described

above) where the present value is computed using the discount factor of households. Similarly

calculate the present value of aggregate consumption. The welfare cost is computed as

the present value of the equivalent payments divided by the present value of aggregate

consumption. Computed this way, the welfare cost of the proposed policy change is nearly

0.1% of the present value of consumption.

6 Conclusion

Of central interest to this paper is the curious result that in a life-cycle version of the neo-

classical growth model used by Cooley and Hansen (1989), an inflation rate in excess of 20%

maximizes steady state lifetime utility of newborns. Inflation has two effects. First, through

the cash-in-advance constraint, inflation distorts the labor-leisure choice, an effect that nec-

essarily reduces utility. Second, inflation transfers resources from old, rich households to

young, poor ones. The reason behind this second effect is that real money balances rise with

6The long run welfare benefit is smaller than reported in the steady state analysis owing to the difference
in the reference inflation rate (0% in the steady state analysis, 5% for the transition).
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Figure 6: Transition Dynamics Following a Permanent, Unanticipated Change in Money
Growth From 5% to 23% Per Annum, Occurring at Date 0
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Figure 7: Transition Dynamics Following a Permanent, Unanticipated Change in Money
Growth From 5% to 23% Per Annum, Occurring at Date 0

(a) Lifetime Utility

-145.15

-145.1

-145.05

-145

-144.95

-144.9

-144.85

-144.8

-144.75

-200 -100  0  100  200  300  400

Generation

(b) Welfare Benefit

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

-200 -100  0  100  200  300  400

Quarters

26



age – a consequence of the cash-in-advance constraint and an increasing age-consumption

profile – which means that the burden of the inflation tax falls more heavily on old, rich

agents while the lump-sum transfers are age independent. This second effect flattens the

profiles for consumption, leisure and utility, making these profiles more like those chosen

by planner who discounts utility of generations using the same discount factor as used by

households.

Switching from the steady state allocation associated with 5% money growth to the one

that maximizes steady state lifetime utility of newborns, 23%, does not deliver a Pareto

superior allocation since the old are made worse off. To evaluate the magnitude of this

problem, the transition between the 5% and 23% steady states was computed. This exercise

revealed: (1) the vast majority of those alive at the time of the change are made worse off;

(2) on impact, the welfare loss is 0.3% of consumption; and (3) it takes 40 years before an

aggregate welfare benefit is recorded. The overall welfare cost of this policy change is just

over 0.1% of consumption.

The results in this paper should have application to other taxes. Specifically, it is well

known that there is an equivalence between the inflation tax, the labor income tax, and a

consumption tax. In light of the results in this paper, a consumption tax or a labor income

tax used to effect transfers of resources from the old to the young would also be found to

improve steady state lifetime utility of newborns.
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A Technical Appendix

A.1 Monetary Model

A.1.1 Household’s Problem

The household’s Bellman equation is:

V(kit,M
i
t ; i) ≡ max

{
U(cit, 1− nit) + βEt+iV(ki+1

t ,M i+1
t ; i+ 1)

+ Λi
1t

[
Wt+in

i
t + [(1− δ)Pt+i +Rt+i] k

i
t +M i

t +Xt+i

− Pt+icit − Pt+iki+1
t −M i+1

t

]
+ Λi

2t

[
M i

t +Xt+i − Pt+icit
]}
.

The choice variables are: cit, n
i
t, k

i+1
t and M i+1

t . Keep in mind the boundary conditions,

Eqs. (3) and (4). The relevant Euler conditions are:

cit : Uc(c
i
t, 1− nit) = Pt+i

[
Λi

1t + Λi
2t

]
, i = 0, . . . , T − 1

nit : U`(c
i
t, 1− nit) = Λi

1tWt+i, i = 0, . . . , T − 1

ki+1
t : βEt+iΛ

i+1
t [(1− δ)Pt+i+1 +Rt+i+1] = Λi

1tPt+i, i = 0, . . . , T − 2

M i+1
t : βEt+i

(
Λi+1

1t + Λi+1
2t

)
= Λi

1t, i = 0, . . . , T − 2

These equations, along with the budget constraint, Eq. (1), cash-in-advance constraint,

Eq. (2), and the boundary conditions characterize the solution to the household’s problem,

including the multipliers, Λi
1t and Λi

2t.
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A.1.2 Goods Producing Firms

The problem faced by a typical goods producer is given in the text in Eq. (5). The associated

first-order conditions are:

PtFk(Kt, Nt; zt) = Rt

PtFn(Kt, Nt; zt) = Wt

A.1.3 Government

In addition to the expressions for lump-sum transfers, Eq. (6), the stock of money evolves

according to

Mt+1 = µtMt.

A.1.4 Aggregates

Total capital, labor, money and consumption are given, respectively, by:

Kt =
T−1∑
i=0

kit−i, Nt =
T−1∑
i=0

nit−i, Mt+1 =
T−1∑
i=0

M i+1
t−i , and Ct =

T−1∑
i=0

cit−i.

A.1.5 Conversion to Real Magnitudes

Normalize nominal variables by the aggregate price level:

wt+i ≡
Wt+i

Pt+i
, rt+i ≡

Rt+i

Pt+i
, xt+i ≡

Xt+i

Pt+i
,

mi+1
t ≡ M i+1

t

Pt+i
, λi1t ≡ Λi

1tPt+i, λi2t ≡ Λi
2tPt+i, πt+i ≡

Pt+i
Pt+i−1

, mt+1 ≡
Mt+1

Pt
.

Notice that money balances are normalized by the ‘previous period’ price level; this is done

so that the household’s budget constraint does not involve next period’s price level which is

not known at the time household decisions are made.

The equations governing the solution of this economy are:

cit + ki+1
t +mi+1

t = wt+in
i
t + [1 + δ + rt+i] k

i
t +

mi
t

πt+i
+ xt+i i = 0, . . . , T − 1
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cit =
mi
t

πt+i
+ xt+i, i = 0, . . . , T − 1

Uc(c
i
t, 1− nit) =

[
λi1t + λi2t

]
, i = 0, . . . , T − 1

U`(c
i
t, 1− nit) = λi1twt+i, i = 0, . . . , T − 1

λi1t = βEt+i
{
λi+1
1t [1− δ + rt+i+1]

}
, i = 0, . . . , T − 2

λi1t = βEt+i

{
λi+1
1t + λi+1

2t

πt+i+1

}
, i = 0, . . . , T − 2

k0t = 0, ktt = 0

m0
t = m, mt

t = m

rt = Fk(Kt, Nt; zt)

wt = Fn(Kt, Nt; zt)

Kt =
T−1∑
i=0

kit−i

Nt =
T−1∑
i=0

nit−i

mt+1 =
T−1∑
i=0

mi+1
t−i

mt+1 = µt
mt

πt

xt =
(µt − 1)mt/πt

T

A.2 Non-monetary Model

A.2.1 Household’s Problem

The household’s Bellman equation is:

V(kit; i) ≡ max

{
U(cit, 1− nit) + βEt+iV(ki+1

t ; i+ 1)

+ λit
[
wt+in

i
t + [rt+i + 1− δ]kit − (cit + ki+1

t )
]}
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The Euler equations and budget constraint are:

cit + ki+1
t = wt+in

i
t + [rt+i + 1− δ]kit, i = 0, . . . , T − 1

U2(c
i
t, 1− nit) = λitwt+i, i = 0, . . . , T − 1

U1(c
i
t, 1− nit) = λit, i = 0, . . . , T − 1

λit = βEt+iλ
i+1
t [rt+i+1 + 1− δ], i = 0, . . . , T − 2

k0t = 0, ktt = 0

A.3 The Pareto Problem

The Lagrangian for the planner’s problem is

L =
0∑

t=−T+1

ωt

[
T−1∑
i=T+t

βiU(cit, 1− nit)

]
+
∞∑
t=1

ωt

[
T−1∑
i=0

βiU(cit, 1− nit)

]

+
∞∑
t=0

λt

[
F

(
Kt,

T−1∑
i=0

nit−i

)
+ (1− δ)Kt −

T−1∑
i=0

cit−i −Kt+1

]

The first-order conditions are:

cit : ωtβ
iUc(c

i
t, 1− nit)− λt+i = 0 (A.1)

nit : ωtβ
iU`(c

i
t, 1− nit)− λt+iFn(Kt, Nt) = 0 (A.2)

Kt+1 : − λt + λt+1 [Fk(Kt+1, Nt+1) + 1− δ] = 0 (A.3)

where Nt =
∑T−1

i=0 n
i
t−i.

Eqs. (A.1) and (A.2) can be combined to give

U`(c
i
t, 1− nit) = Uc(c

i
t, 1− nit)Fn(Kt, Nt). (A.4)

Eqs. (A.1) and (A.3) yield

ωtβ
iUc(c

i
t, 1− nit) = ωt+1β

iUc(c
i
t+1, 1− nit+1) [Fk(Kt+1, Nt+1) + 1− δ] . (A.5)

Assume that the weight attached to generation t is given by ωt = βt; in other words, the
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planner discounts utility of each generation by the same discount factor used by households.

Eq. (A.1) now reads

βt+iUc(c
i
t, 1− nit)− λt+i = 0 (A.6)

Now, consider an agent born at t− 1, aged i+ 1:

βt+iUc(c
i+1
t−1, 1− ni+1

t−1)− λt+i = 0 (A.7)

Eqs. (A.6) and (A.7) imply

Uc(c
i
t, 1− nit) = Uc(c

i+1
t−1, 1− ni+1

t−1). (A.8)

Focus on steady state in which cit = ci, nit = ni and Kt = K. Eqs. (A.4), (A.5) and (A.8)

now read

U`(c
i, 1− ni) = Uc(c

i, 1− ni)Fn(K,N) (A.9)

1 = β [Fk(K,N) + 1− δ] (A.10)

Uc(c
i, 1− ni) = Uc(c

i+1, 1− ni+1). (A.11)

A.4 Computational Issues

Notice that the aggregate state vector includes the capital and money holdings of all cohorts

alive at a particular date. Individual decision rules depend on the entire state vector (not

merely a few selected moments) since the state vector is needed to form expectations of

future prices (which, in turn, depend on the future state vector). Fortunately, as pointed

out by Ŕıos-Rull (1996), matters are greatly simplified if decision rules are linear. When

solving for decision rules when the stochastic elements of the model are in play, it is then

opportune to use a log linearization technique. See Klein (2000) for details on the particular

technique employed in this paper.
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