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Abstract

In macroeconomics, life-cycle models are typically used to address exclusively life-
cycle issues. This paper shows that modeling the life-cycle may be important when
addressing public policy issues, in this case the welfare costs of inflation. In the rep-
resentative agent model, the optimal inflation rate is characterized by the Friedman
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mal inflation rate is quite high: for the benchmark calibration, it is around 95% per
annum. Much of the paper is concerned with understanding this result. Briefly, in the
life-cycle model there are distributional consequences of injecting money via lump-
sum transfers. The net effect is to transfer income from old, rich agents to young,
poor ones. These transfers twist the age-utility profile in a way that agents find desir-
able from a lifetime utility point of view. A second issue concerns how to assess the
costs of inflation in a life-cycle model. Metrics that are equivalent in the representative
agent model can give very different answers in a life-cycle model.
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1 Introduction

Measuring the welfare costs of inflation in dynamic general equilibrium models is, at

this point, well-trod territory. By way of example, the early work of Cooley and Hansen

(1989) placed the costs of a 10% inflation at around 0.4% of income, measured relative to

the Friedman rule optimum. With but a few notable exceptions, discussed later in this

introduction, estimates of the costs of inflation have been made within the representative

agent framework. For many macroeconomic issues, the representative agent fiction is

a useful one. For example, Rı́os-Rull (1996) showed that for understanding aggregate

business cycle phenomena, the life-cycle is largely irrelevant. The basic question asked

in this paper is, How do the costs of inflation change when agents differ by age? For

the benchmark model, a life-cycle version of Cooley and Hansen, the answer is, Quite a

bit. More specifically, the optimal inflation rate (the one maximizing steady state life time

utility) is quite high – on the order of 95%. Before giving some intuition for why high

inflation is optimal, it will help to know the model’s key features.

First, as in Cooley and Hansen (1989), money is held in order to satisfy a cash-in-

advance constraint on purchases of the consumption good. Second following Cooley

and Hansen, money injections occur via lump-sum transfers (so-called helicopter drops

of money). Third, individuals live exactly T periods; there is no random death as in

Rı́os-Rull (1996). Fourth, individuals face a hump-shaped human capital profile. This

feature is included so as to match up with evidence on real wages over the life-cycle.

Fifth, individuals start life with no capital (real assets), and must end their lives with non-

negative capital holdings. Since there is no bequest motive, individuals will, in fact, end

life with no capital. Between birth and death, individual are unconstrained with respect

to their capital holdings, and so may go into debt if they wish. Finally, individuals start

life with some real money balances. This feature is included so that there is not a ‘trivial’

reason for inflation to be welfare-improving: If individuals have no initial real balances,

then if there is no lump-sum transfer of money balances, the cash-in-advance constraint
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implies that individuals would be unable to purchase consumption in the first period of

their lives. So that money is not simply created “out of thin air,” it is assumed that agents

end life with the same level of real balances with which they started.

Increases in inflation have two opposing effects. The first is the usual distortion of the

labor-leisure choice owing to the fact that current income cannot be spent on consump-

tion goods in the same period in which the income is earned. This first effect implies that

inflation is welfare-reducing. The second effect is the redistribution of income operating

through the lump-sum money injections. This latter effect improves lifetime utility by

flattening the utility-age profile. For the benchmark calibration, the second effect domi-

nates up to an annual inflation rate of 95%.

The principal findings are as follows. As already discussed, in the benchmark model

in which seigniorage is the only source of government revenue, annual inflation rates

around 95% maximize steady state lifetime utility. A number of other welfare metrics

are considered; for the most part, they confirm the finding that high inflation is welfare-

maximizing; see Section 4 for details. Why this surprising result? Under the benchmark

calibration, the real interest rate is positive, and the Euler equation governing asset accu-

mulation thus implies that individual consumption profiles rise with age. Owing to the

cash-in-advance constraint, real money balances also increase with age. Since new money

enters the economy via lump-sum transfers that are independent of age, the young re-

ceive more in transfers than they pay out in inflation taxes. The reverse is true for the old.

In effect, inflation transfers resources from the old to the young – a sort of reverse social

security system. These transfers tend to flatten the utility-age profile in a way that agents

find desirable, at least from a lifetime utility point of view. Individuals are unable to repli-

cate this flattening of the utility-age profile on their own because they face a positive real

interest rate on their borrowing while the government can, in a sense, ‘borrow’ on behalf

of the individual at a zero real interest rate (the government simply transfers resources at

a point in time, albeit through distortionary inflation financing).

2



Since the inflation tax operates much like a consumption tax, a sanity check on the

benchmark model’s results is to analyze a real version of the model, dropping the cash-in-

advance constraint, and introducing a consumption tax. As in the benchmark model, tax

revenues are lump-sum rebated to households. The optimal consumption tax is around

14%, fairly close to the optimal inflation tax rate for the benchmark model: 15% (using

the quarterly inflation rate).

While the specific inflation rate that maximizes lifetime utility depends to some degree

on the particular parameter values, the result that high inflation rates maximize lifetime

utility is quite robust. A number of model variants are considered, motivated by a desire

to understand why high inflation is optimal. The first such model variant introduces taxes

on labor and capital income, as well as on consumption purchases. These taxes are set at

levels seen in the United States. The proceeds of these fiscal taxes are lump-sum rebated to

households. The reason for considering this variant is to figure out whether it really is the

ability of the government to transfer income from the old to the young that drives the high

optimal inflation result in the benchmark calibration. The first result of interest is that,

holding the other taxes fixed, the lifetime utility-maximizing inflation rate is essentially

the Friedman rule (that is, the negative of the real rate of interest). Alternatively, suppose

that as the inflation tax is varied, one of the other taxes is adjusted so that total government

revenue is unchanged. Once more, fairly high inflation rates maximize lifetime utility.

Again, other welfare metrics give similar results. These results an reminiscent of those

found in Cooley and Hansen (1992); they found that capital and labor income taxes are

quite distorting compared to the inflation tax.

A second variant asks whether the cash-in-advance constraint is too rigid a payment

technology. To investigate this possibility, costly credit is introduced allowing for an en-

dogenous determination of “cash” and “credit” goods; see Prescott (1987); Schreft (1992);

Gillman (1993); Ireland (1994). Specifically, households consume a continuum of goods

and must choose which goods to purchase with cash, and which with credit. The cost
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of using credit increases with the “distance” from the household’s “home” market. As

in Dotsey and Ireland (1996), a household will use credit in those markets close to its

home, and cash in all other markets. When there are no other taxes, the optimal money

growth (inflation) rate is around 3% per annum. The only case in which high inflation

maximizes lifetime utility is when U.S. tax rates are in place and seigniorage revenue is

used to reduce the labor income tax; in this case, the optimizing inflation rate is in the

neighborhood of 40% per year.

A final experiment considers the transition from one money growth rate to another.

In the costly credit version of the model with U.S. tax rates, reducing the money growth

rate to zero maximizes lifetime utility in steady state. However, a policy that generates a

welfare gain across steady states need not generate a welfare gain after accounting for the

transition between these steady states. An example would be an overlapping generations

model in which the policy under consideration shifts a lot of consumption from old age

to young age; the welfare losses of the initial old may dominate any subsequent welfare

gains. As shown in Section 7, all generations are made better off by switching to zero

money growth.

As mentioned earlier, there are two other notable papers that assess the importance

of heterogeneity in measuring the costs of inflation: İmrohoroğlu (1992) and Erosa and

Ventura (2002). The environment considered by İmrohoroğlu is one in which individuals

hold money balances as a buffer against uninsurable income shocks (spells of unemploy-

ment). Her key result is that Bailey welfare triangles understate the costs of inflation by

as much as a factor of 3. Erosa and Ventura’s model has two types of agents, rich and

poor. They also allow for an endogenous cash-credit good distinction. They calibrate

their model to match observations for the United States which implies that the poor pur-

chase a greater proportion of their goods with cash, and so experience a greater burden

of the inflation tax.

The remainder of the paper is organized as follows. The model is presented in Sec-
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tion 2, and calibrated in Section 3. Welfare results for the benchmark economy can be

found in Section 4. Section 5 introduces other taxes while Section 6 incorporates en-

dogenous cash-credit goods. Transition dynamics are presented in Section 7. Section 8

concludes.

2 The Economic Environment

The model setup is more general than is necessary for the benchmark (cash-in-advance)

model in order to accommodate later variants. To later allow for an endogenous cash-

credit good distinction, it is assumed that at each date t, a continuum of markets oper-

ate on the circumference of a circle; the length of the circumference is 2. Each location

along the circumference is occupied by a continuum of goods producing firms, financial

intermediaries, and households of each cohort. Enough symmetry is assumed that the

analysis can focus on a representative firm, a representative financial intermediary, and a

representative household of each cohort.

2.1 Households

At each date t is ‘born’ a unit mass of identical individuals. Each individual will experi-

ence exactly T periods of ‘economic life.’ The term economic life is used to refer to indi-

viduals who have entered the labor force and so participate in economic activity. Early

childhood development and education are not considered here. Altruism between par-

ents and their offspring is also suppressed. In order to analyze fairly realistic life-cycle

dynamics, the lifespan T will be long. In the calibration section, a period will be specified

as one quarter, and T will be set to 220, corresponding to 55 years of economic life.

Since individuals differ only as to their date of birth, individual-specific variables need

to specify an individual’s date of birth, and their current period of life. By way of example,

ni
t denotes the hours of work of an individual born at date t who is in their ith period of
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life. In calendar time, these hours are supplied at date t + i.

In each period of life, an individual has a taste for variety with respect to consump-

tion goods. In particular, a household at location j′ cares about the range of goods,

[j′, mod(j′ + 1, 2)]. In the presentation below, attention will be focused on the household

at location 0 which consumes goods on the interval j ∈ [0, 1], denoted {ci
t(j)}1

j=0. These

consumption goods are aggregated according to a Leontief technology,

ci
t = inf

j∈[0,1]

{
ci

t(j)
}

. (1)

Use of this aggregator is common in the costly credit literature; see, for example, Prescott

(1987). An implication of Eq. (1) is that the household will choose to consume the same

quantity of all goods.

Preferences for a member of generation t (that is, someone born at t) are given by:

Et

T−1

∑
i=0

βiU(ci
t, `

i
t), β > 0.

The period utility function, U, is defined over consumption, ci
t, and leisure, `i

t, and is

assumed to possess standard properties. Future utility is discounted at the rate β.

Households face a number of constraints. To start, the nominal budget constraint is

Pt+i(1 + τc)
∫ 1

0
ci

t(j)dj + Pt+i[ki+1
t − (1− δ)ki

t] +
∫ 1

0
Ii
t(j)Qt+i(j)dj + Mi+1

t =

(1− τn)Wt+ihini
t + (1− τk)Rt+iki

t + Mi
t + XM

t+i + XR
t+i, i = 0, . . . , T − 1.

(2)

The right-hand side gives sources of funds. The first term is after-tax labor income; the tax

rate on labor income is τn. The variable hi, denoting the ‘human capital’ of an individual

aged i, is included in the model so that the life-cycle profile of labor earnings resembles

that observed in the U.S. data. The human capital profile is exogenous and known to an

individual from birth. At age i, an individual combines human capital with time supplied

to the market, ni
t, earning a pre-tax wage Wt+i on human capital-augmented hours. The

observed pre-tax wage for an individual aged i will be Wt+ihi.
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The second term on the right-hand side of Eq. (2) is after-tax capital income. The

household starts period t + i with real assets (or capital) ki
t. It rents this capital for a

nominal rental payment of Rt+i which is taxed at the rate τk.

The household also starts period t + i with money balances, Mi
t. It receives two lump-

sum transfers from the government: a purely monetary transfer, XM
t+i, and a ‘real’ transfer

which when expressed in nominal terms is XR
t+i.

The left-hand side of Eq. (2) represents uses of funds. The price level at t + i is Pt+i.

The household purchases the range of consumption goods {ci
t(j)}1

j=0; these purchases are

taxed at the rate τc. The household also expends funds on investing in capital, given by

the second term on the left-hand side. Here, δ is the depreciation rate of capital. Negative

investment is permitted and corresponds to a change in ownership in capital goods.

The household can use either cash or credit to purchase its consumption goods. If

the household uses credit in market j, it incurs a lump-sum cost of Qt+i(j). The indicator

function Ii
t(j) equals 1 if the household chooses to purchase good j with credit, and equals

0 if it buys good j with cash. Consequently, the integral on the left-hand side of Eq. (2)

represents to total outlay on credit services.

Finally, the household departs period t + i with nominal money balances Mi+1
t .

The household faces the following cash-in-advance constraint:

(1 + τc)Pt+i

∫ 1

0
[1− Ii

t(j)]ci
t(j)dj ≤ Mi

t + XM
t+i, i = 0, . . . , T − 1. (3)

Recalling that Ii
t(j) = 0 for goods purchased with cash, the term on the left-hand side of

the cash-in-advance constraint is the value of consumption purchased with money. These

purchases are constrained by the sum of beginning-of-period money balances and the

monetary lump-sum payment from the government, XM
t+i.

The time endowment of an individual is normalized to unity; thus, labor and leisure

must satisfy

`i
t + ni

t ≤ 1, i = 0, . . . , T − 1.
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The only constraints that will be placed on capital holdings are that individuals start

life with no capital, and they must end life with non-negative capital:

k0
t = 0, kT

t ≥ 0. (4)

ki+1
t < 0 would mean that at age i a member of generation t went into debt.

The final two constrains are on money holdings. It is assumed that individuals start

life with real balances, m > 0, and must end life with the same level of money balances:

M0
t

Pt−1
= m,

MT
t

Pt+T−1
≥ m. (5)

If m = 0, then the cash-in-advance constraint, Eq. (3), would imply that positive first

period of life consumption is feasible only if the transfer, XM
t , is strictly positive. This

transfer can be strictly positive only if money growth, and so inflation, is strictly positive.

Absent positive initial money balances there would be a trivial reason for positive infla-

tion to dominate the Friedman rule (deflate at the real interest rate) since this would be

the only way for individuals to enjoy positive first period consumption.

The initial real balances could be thought of as a transfer made from a parent to an

offspring, or as coming from earnings of a child prior to entering the labor force. The

constraint on end-of-life real balances is imposed to conserve on aggregate private money

balances (money balances are not being magically introduced through the endowment of

the just-born).

Most of the constraints faced by an individual will be satisfied owing to nonsatiation.

The cash-in-advance constraint will bind if inflation is sufficiently high to ensure that the

return on capital exceeds that on money (so that no one would hold money as a store of

value). It is assumed that this condition is, in fact, satisfied.
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2.2 Financial Intermediaries

For the household to use credit in market j, it must purchase the right to use credit in that

market at the price Qt(j). This cost might be thought of as that associated with verifying

the identity of the household in market j. An intermediary located in market j requires

γ(j) units of labor to identify the household. This labor input increases with distance:

γ′(j) > 0. The nominal cost to the intermediary is Wtγ(j). Owing to competition among

the financial intermediaries in market j, in a competitive equilibrium each earns zero

profits; thus,

Qt(j) = Wtγ(j). (6)

2.3 Goods Producing Firms

Firms face a sequence of static problems. Each period, the typical firm rents capital, Kt,

and hires effective units of labor (that is, human capital-augmented labor), Ng
t , to maxi-

mize real profits,

PtF(Kt, Ng
t ; zt)− RtKt −WtN

g
t , (7)

where F is a standard constant-returns-to-scale production function and zt is a shock to

technology. Since F is constant-returns-to-scale, in equilibrium firms will earn zero prof-

its. Consequently, there was no need to tackle the tricky issue of firm ownership when

specifying the households’ problems.

2.4 Government

Each period, the government levies a set of taxes and creates (or destroys) money balances

subject to its budget constraint. The monetary transfer is

XM
t =

(µt − 1)Mt

T
(8)
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where µt is the gross growth rate of money, Mt is aggregate money balances, and T is

the number of generations alive at t. Consequently, each generation receives its ‘share’ of

new money balances.

The transfer from the fiscal authority is

XR
t =

τcPtCt + τnWtNe
t + τkRtKt

T
(9)

where Ct denotes aggregate consumption, Ne
t is the total supply of labor (measured in

efficiency units), and Kt is the aggregate capital stock; these variables are defined below

in Section 2.6. Notice that the government runs a balanced budget each period; it does

not issue debt.

2.5 Analysis: Cash or Credit?

In choosing whether to use cash or credit to purchase a particular good, a household

balances two different costs. In general, for the household to use cash, it must have ac-

quired this money in the previous period which entails an opportunity cost: the house-

hold could, instead, have acquired more of the real asset which presumably pays a higher

rate of return than money. While using credit does not require ‘advanced planning,’ it

does involve the direct cost Qt(j). Clearly, the household will choose to use cash when it

is relatively cheap to do so, else it will use credit.

Recall that the price of credit is given by Eq. (6), or in real terms,

qt(j) = wtγ(j)

where qt(j) ≡ Qt(j)/Pt and wt ≡Wt/Pt. A straight cash-in-advance version of the model

is a special case in which γ(j) is so high that using credit is prohibitively expensive. More

generally, suppose that γ(0) = 0 and limj→1 γ(j) = ∞. That is to say, the labor input

required to identify the household in its ‘home market’ is zero while it requires an infinite

input at the farthest market that the household shops in. Then both cash and credit will
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be used. Furthermore, since γ′(j) > 0, it follows that there is a cutoff, si
t, such that credit

is used for goods j ∈ [0, si
t] while cash is used for goods j ∈ (si

t, 1]; see Dotsey and Ireland

(1996). Consequently, the choice of {Ii
t(j)}1

j=0 is simplified greatly. The simpler problem

is presented in the Appendix along with first-order conditions and a conversion to real

magnitudes.

A feature of the fixed cost nature of credit services is that rich agents are more willing

to incur the cost of using credit; see Erosa and Ventura (2002). In the current environment,

it is the older agents who are rich, and it is they who should use credit more frequently.

2.6 Competitive Equilibrium

A competitive equilibrium for this economy is defined in the usual way:

(1) Each member of cohort t chooses contingency plans for consumption, hours of work,

capital and money holdings, so as to maximize lifetime utility taking as given the

process generating prices and the evolution of the aggregate state.

(2) Firms maximize period-by-period profits taking as given prices.

(3) The government satisfies its budget constraint.

(4) Markets clear:

Kt =
T−1

∑
i=0

ki
t−i,

Ne
t =

T−1

∑
i=0

hini
t−i,

Mt+1 =
T−1

∑
i=0

Mi+1
t−i ,

T−1

∑
i=0

ci
t−i︸ ︷︷ ︸

Ct

+
T−1

∑
i=0

[
ki+1

t−i − (1− δ)ki
t−i

]
︸ ︷︷ ︸

It

= F(Kt, Ng
t ; zt)

Ne
t = Ng

t +
T−1

∑
i=0

si
t−i
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In the market clearing conditions the summations are across individuals alive at date

t. By way of example, ci
t−i is the consumption at date t of a typical member of cohort t− i;

at time t, this individual is aged i.

3 Calibration

The length of a period is set to one quarter, and individuals live exactly 55 years; thus,

T = 220.

The period utility function is parameterized as

U(c, `) =
[c`ω]1−σ − 1

1− σ
.

In the benchmark model, the coefficient of relative risk aversion, σ, is set to unity and so

U(c, `) = ln c + ω ln `.

The goods production function is

F(K, Ng; z) = zKα(Ng)1−α.

The parameters governing production are taken from Gomme and Rupert (2007). The

capital share parameter, α, is set to 0.283 and corresponds to capital’s share of income

from the U.S. National Income and Product Accounts. The technology shock, zt, follows

a first-order autoregressive process,

ln zt = ρ ln zt−1 + εt, εt ∼ N(0, σ2
ε ).

Over the sample 1954–2001, Gomme and Rupert estimate ρ = 0.9641 and σ2
ε = 0.008164.

The depreciation rate for capital, δ, is set to 0.01777, implying an annual depreciation rate

of 6.9%, a value that corresponds closely to the average depreciation rate implicit in the

capital stock and depreciation data reported by the Bureau of Economic Analysis.
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Table 1: Estimates of the Money Growth Process

Currency M1

µ 1.012362 1.008852
ψ 0.8327293 0.6448415
Standard Error (0.0382036) (0.0581623)
σ2

ξ 0.00446666 0.0088325
Sample 1954Q1–2003Q2 1959Q2–2003Q2

Money growth also follows a first-order autoregressive process,

µt = ψµt−1 + (1− ψ)µ + ξt, ξt ∼ N(0, σ2
ξ )

where µ is the long run money growth rate. The parameters governing the behavior of

money growth are estimated from U.S. data on per capita currency and M1 growth. These

parameter estimates are summarized in Table 1. By either measure – currency or M1 –

average (quarterly) money growth has been fairly low. The stochastic processes for the

technology shock and money growth are assumed to be uncorrelated. Running SUR on

the Solow residual and per capital currency growth gives similar parameter estimates to

the above; the innovations have a correlation of 0.0936 which is not significantly different

from zero.

The credit technology is parameterized as in Dotsey and Ireland (1996):

γ(j) = γ

(
j

1− j

)θ

. (10)

The benchmark model is a straight cash-in-advance model without credit as in Cooley

and Hansen (1989). Setting γ = ∞ ensure that no credit is used (except, perhaps, for the

home market which is of measure zero). The implications of more general formulations

with credit use are explored in Section 6.

The human capital profiles are smoothed profiles based on the Panel Study on Income

Dynamics and is taken from Gomme, Rogerson, Rupert and Wright (2005); see Figure 1b.

There are two preference parameters that have yet to be assigned values: the discount
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factor, β, and the leisure weight, ω. These parameters are set such that in steady state: (1)

the real interest rate is 4% per annum which is a typical value used in the real business

cycle literature; and, (2) households work, on average 0.255 of the time, a value consistent

with time-use surveys; see Gomme and Rupert (2007).

The benchmark calibration is designed to correspond as closely as possible to Cooley

and Hansen (1989). As a consequence, all the taxes are set to zero.

Finally, m, initial and final money balances, are set to 0.1, which constrains first period

consumption. As shown in Figure 1, this choice of initial money balanced clearly con-

straints first period consumption in the benchmark model. However, this is not the case

in the costly credit version of the model analyzed in Section 6. To avoid too many changes

between the two model variants, initial money balances are kept the same. To ensure that

individuals in the costly credit model would want to spend all of their first period money

balances, the initial endowment of real balances was kept “small.” The optimal inflation

results in the benchmark cash-in-advance model are fairly insensitive to agents’ initial

endowments of real money balances.

The values of the parameters for the benchmark calibration are summarized in Table 2.

3.1 Steady State

The age-profiles of consumption, human capital, real money balances, hours of work,

capital (real assets) and utility are graphed in Figure 1, along with the profiles corre-

sponding to a non-monetary version of the model (in which case all goods are effectively

credit goods). The non-monetary steady state is presented to verify that the introduction

of money into the life-cycle model does not severely alter the nature of the model’s steady

state.

The human capital profiles, taken from Gomme et al. (2005), indicate that real wages

rise fairly quickly, peak around age 55 (i = 140), then gradually decline. Hours of work

peak around age 35 (i = 60).
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Table 2: Benchmark Model Parameter Values

Preferences
β 0.9838 discount factor
ω 2.3565 labor-leisure weight
σ 1.0 coefficient of relative risk aversion

Technology
α 0.283 capital’s share of income
δ 0.0178 depreciation rate of capital
ρ 0.9641 technology shock, autoregressive parameter
σε 0.0082 standard deviation of innovation to technology shock

{hi}T−1
i=0 human capital profiles

Money Growth
ψ 0.8327 autoregressive parameter
µ 1.0416 long run annual money growth rate
σu 0.0045 standard deviation of innovation to money growth

Other
T 220 number of periods of life

Calibration Targets
h 0.255 average hours worked
r 0.0192 real interest rate (quarterly)

The consumption profile rises monotonically with age. It is, perhaps, easiest to under-

stand the shape of this profile in the non-monetary version of the model. In this case, one

of the Euler equations is

Uc(ci
t, 1− ni

t) = βEt+i

{
Uc(ci+1

t , 1− ni+1
t )[1 + rt+i+1 − δ]

}
.

Given logarithmic preferences, in steady state this equation reads

ci+1

ci = β[1 + r− δ].

The term in square brackets is the gross real interest rate which is fixed in the calibration

process (for the monetary steady state). In fact, the value of β is calibrated in order to

match that real interest rate target. It turns out that the product of the discount factor and

the gross real interest rate is larger than unity implying that individual will chose a path

for consumption that grows over their lifetimes.

16



Real money balances also rise with age owing to the cash-in-advance constraint.

Early in the life-cycle, households run up debt: their capital holdings are negative.

Between ages 25 years (i = 20) and 55 years (i = 160), they save, followed by a prolonged

period of dissaving. Since there is no bequest motive, individuals choose to end their

lived with no real assets.

The age-profile of utility initially falls, then rises throughout the remainder of life.

The fact that the monetary and non-monetary steady states are so close to each other

suggests that money is not distorting individual behavior too much. This observation

is not too surprising in light of the modest money growth (and consequently inflation)

rates. Given that in the benchmark model money growth is calibrated to the growth rate

of U.S. currency per capita, net money growth is 5% per annum.

3.2 Business Cycle Moments

Another litmus test for the model is whether its predictions for business cycle moments

are similar to those reported in the literature. Table 3 reports business cycle moments for

the U.S. economy, the benchmark model, and the non-monetary model.

There are two important points. First, the model’s performance (whether benchmark

or non-monetary) is on par with that of standard real business cycle models (with a repre-

sentative, infinitely lived agent). This finding should not be too surprising since Rı́os-Rull

(1996) found that an annual version of the life-cycle model generated business cycle mo-

ments similar to that of the standard real business cycle model.

Second, adding money and money growth fluctuations has a fairly minor impact on

the model’s predictions for business cycle fluctuations. Cooley and Hansen (1989) made

a similar observation for a representative, infinitely lived agent model.

In summary, nothing in this section suggests that there is anything odd about the

benchmark model.
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4 Welfare Costs of Inflation

4.1 Lifetime Utility in Steady State

One obvious criterion for evaluating money growth (or inflation) rates is steady state

lifetime utility. Since steady state decisions differ across money growth rates, index these

decision rules by µ. Steady state lifetime utility, condition on money growth µ, can be

expressed as:

V(µ) ≡
T−1

∑
i=0

βiU[ci(µ), `i(µ)].

Figure 2 plots V(µ) against a range of money growth rates. Remarkably, steady state

lifetime utility is maximized at a money growth (inflation) rate of 95% per annum.1 By

way of contrast, in models with an infinitely-lived representative agent, like Cooley and

Hansen (1989), steady state utility is maximized by setting µ = β which implies a negative

(net) money growth rate. Such a money growth rate results in a zero nominal interest rate,

a result known as the ‘Friedman rule.’

As seen in the literature, higher inflation (money growth) is associated with dimin-

ished aggregate market activity; see Figures 2a and 2b. For example, Cooley and Hansen

(1989) find that an increase in the annual inflation rate from 0% to 100% lowers aggregate

output, consumption and hours by 16%; for the benchmark model, real activity falls by

11%.

That the utility-maximizing money growth rate is so high is even more surprising

given the similarity in the life-cycle profiles of consumption and leisure (hours of work)

across the benchmark and non-monetary models’ steady states presented in Figure 1.

That is to say, money growth is not introducing a substantial distortion into the steady

state of the model.
1A natural question is whether the extremely high inflation rate is the result of a programming error.

While computing the steady state is a computationally demanding task, verifying it is not. In particular,
the steady state quantities can be dumped into a file, imported into a spreadsheet, and the Euler equations
and other constraints can be verified by hand. Doing so reveals no errors in computing steady state.
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Some insight into why the lifetime utility-maximizing inflation rate is so high can

be garnered from Figure 3 which presents life-cycle profiles for the benchmark money

growth rate (5%) and the optimal money growth rate (95%). Notice that the higher money

growth (inflation) rate twists the utility profile, making it flatter.

Why should higher inflation lead to improved utility-smoothing over the life-cycle?

Recall that consumption (and, via the cash-in-advance constraint, real money balances)

grows over the life-cycle. Consequently, older agents pay a higher inflation tax than

younger agents – but the proceeds of the inflation tax are rebated independent of age.

Figure 3d shows that for the optimal inflation rate, net taxes paid – that is, the inflation

tax paid less the lump-sum transfer – are big and positive for old households while young

households receive transfers on net. In other words, inflation is a means of transferring

resources from old, rich households to young, poor ones.

Of course, there is a cost to inflation. As is standard in cash-in-advance models, infla-

tion introduces a distortion into the labor supply decision since cash earned in the current

period cannot be spent until the subsequent period when inflation has eroded its purchas-

ing power. Figure 3a shows that, apart from the first period of life, the entire age profile

of consumption falls with inflation while Figure 3b shows that hours of work similarly

falls at all ages. That utility rises early in the life-cycle means that the increase in leisure

(decline in labor) more than offsets the decline in consumption. Presumably, tax-transfer

schemes that avoid this deleterious effect of inflation would deliver even higher lifetime

utility.

It is tempting to think that the results for the benchmark calibration are driven pri-

marily (or even entirely) by that first period of life during which consumption is quite

low owing to the small endowment of real money balances. One way to address this is-

sue is to compute lifetime utility, excluding that first period of life. Doing so lowers the

money growth rate that maximized lifetime utility to around 60% – still quite high.

Further intuition into the results in this section can be developed by considering the
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effects of a consumption tax since this tax operates much like the inflation tax. To keep

the environment relatively simply, drop model from the money (allow credit to be costless

so that all goods are purchased on credit). The tax rates on labor and capital income, τn

and τk, remain at zero. Now, vary the consumption tax, τc, to determine the rate that

maximizes steady state lifetime utility. Figure 4a shows that the optimal consumption tax

is around 14%. This figure should be compared with an inflation tax rate of approximately

15% (the quarterly inflation rate is used in this calculation, not the annual one). The two

tax rates are, then, fairly close in magnitude.

Next, Figure 4b plots the life-cycle pattern of net transfers under both the optimal con-

sumption tax and the optimal inflation rate. Except for the first period of life, these two

patterns are visually quite similar. Finally, Figure 4c shows utility by age for the optimal

consumption tax and optimal money growth rate. Again, ignoring the first period of life,

the two series appear to the eye to be quite close together. Overall, the results of this con-

sumption tax experiment lends support for the notion that in the benchmark economy,

the optimal (lifetime utility-maximizing) money growth rate is quite high. This experi-

ment is also consistent with the intuition that a high money growth rate (or consumption

tax) maximizes lifetime utility because it transfers resources from the old to the young,

flattening the life-cycle profile of utility in a manner that agents find desirable.

One might think that households should be able to achieve, on their own, any utility-

smoothing that they desire since they are free to go into debt. No doubt, introducing

period-by-period non-negativity constraints on capital holdings would worsen the ability

of individuals to smooth their utility over their lifetimes, thus perhaps increasing the

potential benefits of inflation in this environment. However, when individuals go into

debt, they eventually must repay this debt. The government, on the other hand, can in

effect ‘borrow’ on behalf of the young at essentially a zero real interest rate. That is to say,

the government faces a different feasibility constraint than that implied by the sequence

of budget constraints confronting households.
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4.2 Welfare Metrics

The next task is to obtain a ‘unit free’ measure of how agents care about alternative infla-

tion (money growth) rates. A common approach in the literature is to find an ‘equivalent

variation payment’ – that is, how much consumption must be given to agents to make

them indifferent between two alternative money growth rates. When there is a represen-

tative agent, this calculation is relatively straightforward; see, for example, Cooley and

Hansen (1989). This calculation is more complicated in the current environment owing to

heterogeneity over the life-cycle. Consequently, a number of alternative measures of the

welfare costs of inflation are explored.

Welfare costs will be expressed relative to a zero inflation rate. Let V(µ0) denote the

lifetime utility associated with a zero money growth rate. For the first two welfare met-

rics, find the age-independent addition to consumption, ∆c(µ), that makes households

indifferent (in a lifetime utility sense) between µ0 and some alternative money growth

rate. That is, find the value of ∆c(µ) that satisfies

T−1

∑
i=0

βiU[ci(µ) + ∆c(µ), `i(µ)] = V(µ0).

To render this measure of the welfare cost unit-free, express the total transfer relative to

either total consumption or total output:

W1 =
T∆c(µ)

C(µ)
× 100%,

W2 =
T∆c(µ)

Y(µ)
× 100%.

Clearly, these two metrics are closely related. The reason for presenting both is that there

is no clear concensus as to whether to present welfare costs in terms of percentage of

consumption, or percentages of income.

A closely related way to measure the costs of inflation is to find the (again, age-

independent) fraction of consumption, λc(µ), that must be given to agents to make them
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as well off as under money growth µ0:

T−1

∑
i=0

βiU[(1 + λc(µ))ci(µ), `i(µ)] = V(µ0),

W3 = λc(µ)× 100%.

Alternatively, the welfare cost can be expressed as the constant fraction of income needed

to give lifetime utility V(µ0):

T−1

∑
i=0

βiU[ci(µ) + λy(µ)yi(µ), `i(µ)] = V(µ0),

W4 = λy(µ)× 100%

where

yi(µ) = (1− τn)w(µ)hini(µ) + [1− δ + (1− τk)r(µ)]ki(µ) + xM(µ) + xR(µ).

The remaining measures of the costs of inflation make the equivalent variation pay-

ments age-specific. Relative to the metrics already presented, these welfare metrics can

target equivalent variation payments to those agents most affected by inflation. In this

case, for each age i, find ∆ci(µ) such that

U[ci(µ) + ∆ci(µ), `i(µ)] = U[ci(µ0), `i(µ0)]. (11)

One pair of welfare metrics is obtained by simply adding up all of the individual equiva-

lent variation payments and dividing by either aggregate consumption or aggregate out-

put:

W5 =
∑T−1

i=0 ∆ci(µ)
C(µ)

× 100%,

W6 =
∑T−1

i=0 ∆ci(µ)
Y(µ)

× 100%.

Suppose that some money growth rate generates a welfare benefit. Thus far, all of

the welfare measures presented have the property that, at a point in time, a benevolent
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government could, in principle, implement a set of lump-sum taxes and transfers (cor-

responding to the equivalent variation payments) that would lead to a Pareto superior

allocation. Two final welfare metrics dispense with this implementability consideration,

and instead discount the equivalent variation payments in Eq. (11):

W7 =
∑T−1

i=0 βi∆ci(µ)
C(µ)

× 100%,

W8 =
∑T−1

i=0 βi∆ci(µ)
Y(µ)

× 100%,

Measure W8 is essentially the same as that of Summers (1981) who used the percentage

change in lifetime income to measure the welfare costs of income taxation.

Table 4 and Figure 5 summarize the welfare calculations. The welfare-maximizing

money growth rate associated with welfare metrics W1 and W2 conform quite closely

with the money growth rate that maximizes lifetime utility. The largest welfare benefit

(i.e., negative welfare cost) occurs around 95% annual money growth rates. The welfare

benefits are quite sizeable: 1.1% of income according to W2. Welfare metrics W3 and

W4 yield maximum welfare benefits at annual money growth rates between 85% and

95% and are associated with a welfare benefit of 1.2% of income. By way of contrast,

the maximum welfare benefit associated with welfare metric W6 is quite small (less than

0.1% of income) and occurs at −3% annual money growth. This result seems odd in

the sense that W6 computes age-specific lump-sum payments (implying that the equiva-

lent variation payments can be targeted to where they are “needed”) while W2 computes

an age-independent lump-sum payment. Finally, W8 – which discounts the age-specific

lump-sum payments computed for W6 – is maximized at 30% money growth, and yields

a welfare benefit of less than 0.1% of income.

It seems odd that alternative, reasonable welfare metrics give such different answers to

such a fundamental question as: What are the welfare costs of alternative money growth

(inflation) rates? While lifetime utility is arguably the most reasonable measure of wel-

fare, it is not unit free. These results are presented in part as a caution to other researchers.
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5 Introducing Other Taxes

The analysis in Section 4.1 suggests that the utility smoothing afforded by the combina-

tion of a high inflation tax and large lump-sum transfers is at the heart of the high life-time

utility-maximizing money growth rates. If that is the case, then arming the government

with alternative sources of revenue – consumption, labor income and capital income taxes

– should lessen its reliance on the inflation tax, and so reduce the optimal money growth

rate. This is the exercise considered in this section.

The tax rates are taken from Mendoza, Razin and Tesar (1994), and correspond to

average effective tax rates for the U.S. The specific values used are: τc = 5.8%, τn = 24.8%

and τk = 42.9%, corresponding to the consumption tax, labor income tax and capital

income tax, respectively.

Life-time utility is plotted against money growth in Figure 6a while the welfare met-

rics W2, W4, W6 and W8 are plotted in Figure 6b. Now, very moderate deflation maxi-

mizes life-time utility; all of the welfare metrics lead to the same conclusion. These results

confirm the conjecture that it is the lump-sum transfers that are driving the high optimal

money growth rates found in Section 4.

As shown in Table 5, the welfare benefit of −3% inflation is between 0.1% and 0.2% of

income, depending on the welfare metric. The costs of moderate inflations are similar to

those found by Cooley and Hansen (1989). For example, relative to a zero inflation rate, a

10% inflation rate generates a welfare cost between 0.3% and 0.5% of income, depending

on the welfare metric.2

5.1 Revenue Neutral Experiments

Now, suppose that the government uses seigniorage revenue to lower one of the other

taxes, subject to raising the same revenue as under zero inflation. Specifically, as money

2Cooley and Hansen (1989) report welfare costs relative to an optimal inflation rate (the Friedman rule)
whereas the results above are expressed relative to a zero inflation rate.
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Figure 6: Optimal Money Growth Rate With U.S. Taxes (τc = 5.8%, τn = 24.8% and
τk = 42.9%)
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Table 6: Revenue Neutral Experiments, Cash-in-advance, U.S. Taxes

τ∗c = −0.4% τ∗n = −10.2 τ∗k = −6.9%

µ∗ 25% 210% 40%
−W2 0.1527 4.0525 5.6446
−W4 0.1507 4.1945 5.2848
−W6 0.0911 2.9631 7.7376
−W8 0.0689 2.3840 6.0060

Notes: µ∗ is the money growth (inflation) rate that maximizes life-time
utility. W2 through W8 are metrics of the welfare costs of inflation and
are defined in Section 4.2. The initial U.S. tax rates are: τc = 5.8%,
τn = 24.8% and τk = 42.9%.

growth, µ, is varied, adjust one of τc, τn and τk to satisfy

(µ− 1)M(µ) + τcC(µ) + τnW(µ)Ne(µ) + τkR(µ)K(µ) =

τc(0)C(0) + τn(0)W(0)Ne(0) + τk(0)R(0)K(0).

The results of these experiments are summarized in Table 6. Replacing the U.S. con-

sumption tax of 5.8% with a consumption subsidy of 0.45%, financed by 25% annual

money growth, maximizes lifetime utility and is associated with either a modest wel-

fare gain (around 0.15% of income according to welfare metrics W2 and W4) or a welfare

loss (0.1% of output according to metrics W6 and W8). As with the benchmark cash-in-

advance model with no other taxes, the optimal policy depends on the welfare criterion

applied. In this case, welfare metrics W6 and W8 suggest that the optimal inflation rate is

slightly positive (1− 2%), yielding a negligible welfare benefit.

Next, lowering the tax rate on labor income from 24.8% to a subsidy rate of 10.2%

(associated with a 210% inflation rate) maximizes lifetime utility. This policy generates a

substantial welfare gain of 2.4% to 4.2% of income. Welfare metrics W2 and W4 are also

maximized at 210% money growth; metric W6 at 140%; and W8 at 160%.

Finally, life-time utility is maximized by replacing the capital income tax of 42.9% with

a subsidy of 6.9% and a money growth rate of 40% per annum. As with the labor income
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replacement experiment, the welfare gains of this policy are sizeable: between 5.3% and

7.7% of income. In this case, the welfare welfare metrics all indicate that the welfare

benefit is maximized at an inflation rate near 40%.

To summarize the results from this section, holding the tax rates on consumption,

labor income and capital income at their U.S. values, the optimal inflation rate is approx-

imately the Friedman rule (deflate at the negative of the real interest rate). However, al-

lowing the proceeds of the inflation tax to replace one of these other taxes again generates

high optimal inflation rates – as high as 210% in the case in which seigniorage revenue is

used to replace the labor income tax rate.

6 Credit

Perhaps the high optimal inflation rates obtained above are due to the very rigid pay-

ments technology associated with the cash-in-advance constraint. When credit is not

available (as in the benchmark economy), the cash-in-advance constraint implies that the

burden of the inflation tax is borne by those who consume the most. In the benchmark

model, that burden falls on older agents; see Sections 3.1 and 4.2. In this section, the pa-

rameters of the credit technology are calibrated to U.S. observations, allowing agents to

choose which goods they wish to purchase with cash and which with credit. Borrowing

on an idea in Erosa and Ventura (2002) who use a similar credit technology, rich agents

(in the benchmark economy, older agents), are better able to afford to use the credit tech-

nology. Consequently, old, rich agents should make greater use of the credit technology,

reducing the role of the inflation tax in financing transfer payments.

The parameters in the credit technology Eq. (10) are now calibrated as in Dotsey and

Ireland (1996). They use two pieces of information to pin down the two parameters, γ

and θ: Evidence on the use of money for transactions in the U.S. from Avery, Elliehausen,

Kennickell and Spindt (1987), and the long-run interest semi-elasticity of money demand.
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Suppose that ‘money’ in the model corresponds to currency in the U.S. economy. Then

30% of transactions in the U.S. use money, and the interest semi-elasticity is 2.73. The

first observation requires that, in steady state, the average value of s must be 0.7 (70% of

transactions are made with credit):

1
T

T−1

∑
i=0

si
t−i = 0.7.

Using the second observation requires solving the model for two different money

growth rates (implying two different inflation rates, and so nominal interest rates). As

in Dotsey and Ireland (1996), inflation rates of 0% and 10% are used, and so

ln v10 − ln v0

R10 − R0
= 2.73

where v10 denotes the annual velocity of money under a 10% inflation, R10 is the corre-

sponding nominal interest rate, and variables with 0 subscripts correspond to an inflation

rate of 0%. The nominal interest rate is computed from a Fisher equation,

R = (1 + π)(1 + r− δ)

where r is the real rental price of capital, and so r− δ is the real interest rate.

6.1 Inflation Tax Only

To start, consider the environment in which there are no other taxes: τc = 0, τn = 0 and

τk = 0. This version of the model corresponds to the benchmark (cash-in-advance) econ-

omy, except that individuals are now able to use credit for some of their purchases. Recall

that in the benchmark model, the optimal inflation rate was very high: 95% maximized

lifetime utility; see Table 4. Results for the costly credit version of the model are summa-

rized in Table 7. As with the benchmark model, the optimal inflation rate depends on the

welfare criterion used. Allowing for the use of credit, an inflation rate of 5% maximizes

lifetime utility – much smaller than in the benchmark economy. With the exception of W5
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Figure 7: Costly Credit Model, Inflation Tax Only

and W6, the other welfare metrics are also maximized at low inflation rates (between 3%

and 5% per year). According W6 – which computes age-specific, undiscounted lump-sum

payments – a modest deflation of −3% is best.

Figure 7a illustrates that net transfers are greatly diminished when credit use is per-

mitted. For comparison with the benchmark model, net transfers are computed for a

money growth rate of 95% – the rate that maximizes lifetime utility in the straight cash-in-

advance model. Under the straight cash-in-advance, such a money growth rate allowed

the government to raise considerable revenue from old agents, and make large transfers

to the young. By way of comparison, in the costly credit version of the model, these taxes

and transfers are extremely modest. This result lends further credibility to the notion that

in the benchmark model of Section 4, it is the large taxes and transfers that leads to the

36



Table 7: Welfare Results Summary, Costly Credit Model, Inflation Tax Only

Criterion
Maximizing

Inflation Rate
(%)

Welfare Gain
(%)

Lifetime utility 5
W2 5 0.0217
W4 5 0.0299
W6 −3 0.1015
W8 3 0.0025

Notes: See Section 4.2 for an explanation of the calculation of the wel-
fare metrics W2 through W8. Welfare costs are computed relative to
a zero inflation rate.

very high optimal inflation rates.

6.2 Other Taxes Too

Introducing other taxes to the costly credit version of the model leads to uniformly lower

optimal inflation rates. In this case, it is difficult to solve for steady state when money

growth is negative, and the optimal inflation rate (by any metric) is zero. Since welfare

costs (or benefits) are measured relative to a zero inflation rate, the welfare costs of the

(constrained) optimal inflation rate are also zero.

Next, the revenue neutral experiments of Section 5.1 are repeated for the costly credit

version of the model. As above, as the money growth rate is varied, so too does the

amount of seigniorage revenue raised. This seigniorage revenue is used to reduce one

other tax. The results of these experiments are summarized in Table 8.3 When seigniorage

revenue is used to reduce the consumption tax, the optimal inflation rate is quite mod-

est: No more than 2% per annum. This policy reduces the consumption tax rate by 0.2

percentage points, and generates a very modest welfare gain (less than 0.01% of income).

However, when the proceeds of the inflation tax are used to lower the labor income tax

3Results for reducing the capital income tax are not included in Table 8 because the economy appears to
be on the “wrong” side of the Laffer curve. Consequently, as inflation rises, the capital income tax actually
has to rise as well to maintain a fixed level of government revenue.
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Table 8: Welfare Results Summary, Costly Credit Model, Revenue Neutral

Criterion
Maximizing

Inflation Rate
(%)

Welfare Gain
(%) Tax Rate (%)

Replace consumption tax τc
Lifetime utility 2 5.6
W2 2 0.0085 5.6
W4 2 0.0083 5.6
W6 0 0.0000 5.8
W8 1 0.0013 5.7

Replace labor income tax τn
Lifetime utility 70 20.3
W2 70 0.4459 20.3
W4 70 0.4229 20.3
W6 60 0.3585 20.7
W8 60 0.3340 20.7

Notes: At zero inflation, taxes are set to their values for the U.S. econ-
omy: τc = 5.8%, τn = 24.8% and τk = 42.9%. Seigniorage revenue is
used to replace one other tax as explained in Section 5.1. See Section 4.2
for an explanation of the calculation of the welfare metrics W2 through
W8.
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rate, rather more substantial inflation rates, between 60% and 70%, maximize welfare.

The labor income tax rate falls by over 4 percentage points, and this policy results in a

welfare gain of between 0.3% and 0.4% of income, depending on the welfare metric used.

While these welfare gains are smaller than seen in the straight cash-in-advance model,

they are sizeable when compared to welfare gains typically seen in the literature.

7 Transition Dynamics

As briefly discussed in the introduction, comparing welfare across steady states can be

misleading. Consequently, it is not obvious that the welfare gains identified above (com-

puted across steady states) would hold up if the transition path from one steady state to

another is considered.

The particular example analyzed in this section is the costly credit version of the model

with U.S. taxes. The policy switch is from five percent money growth (the U.S. historical

average for currency per capita) to zero percent. In steady state, the welfare benefit of

this change in policy is around 0.1% of income (using welfare metric W6 which computes

age-specific lump-sum payments). The policy change is unanticipated and implemented

at time zero. The transition path is computed by using decision rules that have been

linearized around the zero money growth steady state, but with initial conditions given

by the five percent money growth steady state.

The welfare cost of this policy change is computed in a similar fashion as to how the

welfare metric W6 is computed. The difference is that along the transition path, the age-

specific lump-sum payments are computed for each date of the transition. If there is, in

fact, a welfare benefit at each date, then it would be possible, in principle, to actually

implement the set of taxes and transfers that would lead to a Pareto superior allocation.

The transition paths for key macroeconomic variables are summarized in Figures 8a

and 8c. Relative to the initial steady state, output, consumption and hours all rise on im-
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pact, and stay above their previous steady state values. This result is common in models

of inflation: A permanent reduction in inflation lowers the inflation tax which, in a model

with a cash-in-advance constraint, operates like a tax on wage income. In the face of a

higher effective real wage rate, individuals are willing to work more. The transition to

the new steady state is rapid: Most of the action occurs within 10 quarters.

Figure 8b gives the welfare benefit of following this disinflation policy. The welfare

benefit rises sharply on impact, falls somewhat, then asymptotically approaches its long

run value – with a longer transition than for the macroaggregates. Notice, in particular,

that the welfare benefit is uniformly positive.

Finally, Figure 8d plots the lifetime utility of those generations living through the tran-

sition. Unlike the other figures in Figure 8, the horizontal axis in Figure 8d gives the co-

hort, not time. For example, the observation at −200 is the lifetime utility of the cohort

born at date −200. It lives from t = −200 through t = 19. This cohort experiences 200

quarters of life under the five percent money growth regime, and 20 quarters of zero per-

cent money growth. Relative to lifetime utility in the five percent money growth steady

state, every generation living through the transition is made better off. It is, perhaps, in-

teresting to note that those who are very young when the policy is implemented have

higher lifetime utility than those born a few quarters after policy implementation. Those

who are young at date 0 have received the benefit of the net transfer payments associated

with positive money growth, but then: (a) do not have to make the net payments when

they are old, and (b) do not have their labor supply decisions distorted as much by infla-

tion. The intuition underlying the Friedman rule suggests that a negative inflation rate

would distort individual decisions even less than zero inflation. If monetary policy were

subject to a popular vote, the move to zero inflation would be accepted unanimously.
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8 Conclusion

Cooley and Hansen (1989) analyzed the costs of inflation in a representative agent model.

The benchmark model is essentially a life-cycle version of their model. Whereas the Fried-

man rule is optimal in Cooley and Hansen, in the benchmark model the optimal inflation

rate is quite high – around 95% per annum. This rather remarkable result was traced to

the fact that lump-sum money injections imply a transfer of income from old, rich agents

to young, poor ones. The net result is a flattening of the utility profile (by age) that agents

find desirable, at least from a lifetime utility point of view.

A number of model various were considered, initially motivated try a desire to under-

stand the high optimal inflation rate in the benchmark model. Adding other faxes to the

model provides the government with an alternative means to finance it lump-sum trans-

fers. In this case, the optimal inflation rate is essentially the Friedman rule. However, if

seigniorage revenue is used to replace other taxes, high intention rates are again optimal.

This last results an reminiscent of results in Cooley and Hansen (1992) who found that

the distorting of the inflation tax are small relative to income taxes.

A second model variant allowed for an endogenous cash-credit good distinction in

order to assess whether the benchmark economy’s results were due to the rigid payment

technology implicit in the cash-in-advance constraint. In large part it is. Absent other

taxes, the optimal limitation rate was 5% – much smaller than the benchmark economy,

but still well alone the Friedman rule. In this case agents, can avoid some of the effects

of inflation by purchasing costly credit services. As in Erosa and Ventura (2002), it is the

rich agents (here, older agents) who can afford to pay for credit, thereby limiting the gov-

ernment’s ability to apply the inflation tax. Like the benchmark economy, providing the

government with alternative sources of tax revenue further lowers the optimal inflation

rate. Like the benchmark economy, in the costly credit version of the model, the inflation

tax imposes a low distortion relative to, say, the labor income tax.

An interesting issue that arises in a life-cycle model is how to assess the welfare costs
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of inflation. Essentially, four metrics were considered: (1) an age-independent Hick-

sian equivalent payment; (2) an age-independent percentage increment to consumption;

(3) age-specific lump-sum payments, undiscounted; and (4) age-specific lump-sum pay-

ments discounted try the real interest rate. In a representative agent framework, like

Cooley and Hansen (1989), these metrics as well as an evaluation of lifetime utility all

deliver the same answer for the optimal inflation rate, namely the Friedman rule (de-

flate the the real interest rate). In a life-cycle model, this equivalence fails of hold. Most

peculiarly, in the benchmark model, the metric based on finding age-specific lump-sum

transfers (undiscounted) indicates that the Friedman rule is optimal, in sharp contrast to

the 95% optimal inflation rate according to lifetime utility. This is an important difference

between life-cycle and representative agent models.

Comparing steady state utility may be a misleading measure of the desirability of

alternative policies. It is not obvious that along the transition path agents are made better

off by a change in policy, and there may be distributional effects to consider. To evaluate

this possibility, the transition path was computed for the costly credit version of the model

with U.S. tax rates in place. The policy change is to lower money growth once-and-for-

all from 5% per annum to 0%. In steady state, this policy generates a welfare benefit

of 0.12% of income. Two results stand out in this case. First, along the transition path,

the welfare benefit measured at each date is strictly positive. Second, the lifetime utility

of all generations experiencing the change in policy is higher than it would have been

if money growth had remained at 5%. In other words, this change in policy leads to a

Pareto superior outcome.
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Technical Appendix

A.1 Benchmark Model

A.1.1 Household’s Problem

The household’s Bellman equation is:

V(ki
t, Mi

t; i) ≡ max

{
U(ci

t, 1− ni
t) + βEt+iV(ki+1

t , Mi+1
t ; i + 1)

+ Λi
1t

[
(1− τn)Wt+ihini

t + [(1− δ)Pt+i + (1− τk)Rt+i] ki
t + Mi

t + XM
t+i + XR

t+i

− Pt+i(1 + τc)ci
t − Pt+iki+1

t −
∫ si

t

0
Qt+i(j)dj−Mi+1

t

]
+ Λi

2t

[
Mi

t + XM
t+i − Pt+i(1 + τc)(1− si

t)ci
t

]}
.

The choice variables are: ci
t, ni

t, si
t, ki+1

t and Mi+1
t . Recall that credit is used for consump-

tion purchases on markets j ∈ [0, si
t] while cash is used for the remainder, j ∈ (si

t, 1]. Keep

in mind the boundary conditions, Eqs. (4) and (5). The relevant first-order conditions are:

Uc(ci
t, 1− ni

t) = Pt+i(1 + τc)
[
Λi

1t + Λi
2t(1− si

t)
]

, i = 0, . . . , T − 1

U`(ci
t, 1− ni

t) = Λi
1t(1− τn)Wt+ihi, i = 0, . . . , T − 1

Λi
1tQt+i(si

t) = Λi
2tPt+i(1 + τc)ci

t, i = 0, . . . , T − 1

βEt+iΛi+1
t [(1− δ)Pt+i+1 + (1− τk)Rt+i+1] = Λi

1tPt+i, i = 0, . . . , T − 2

βEt+i

(
Λi+1

1t + Λi+1
2t

)
= Λi

1t, i = 0, . . . , T − 2

These equations, along with the budget constraint, Eq. (2), and cash-in-advance con-

straint, Eq. (3), and the boundary conditions characterize the solution to the household’s

problem, including the multipliers, Λi
1t and Λi

2t.
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A.1.2 Goods Producing Firms

The problem faced by a typical goods producer is given in the text in Eq. (7). The associ-

ated first-order conditions are:

PtF1(Kt, Ng
t ; zt) = Rt

PtF2(Kt, Ng
t ; zt) = Wt

A.1.3 Financial Intermediaries

The equations of interest here are the price of using credit, Eq. (6), and the total labor used

in this sector,

Nc
t =

T−1

∑
i=0

∫ si
t−i

0
γ(j)dj

A.1.4 Government

In addition to the expressions for lump-sum transfers, Eqs. (8) and (9), the stock of money

evolves according to

Mt+1 = µtMt.

A.1.5 Aggregates

Total capital, effective labor, money and consumption are given, respectively, by:

Kt =
T−1

∑
i=0

ki
t−i

Ne
t =

T−1

∑
i=0

hini
t−i

Mt+1 =
T−1

∑
i=0

Mi+1
t−i

Ct =
T−1

∑
i=0

ci
t−i.
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A.1.6 Conversion to Real Magnitudes

Normalize nominal variables by the aggregate price level:

wt+i ≡
Wt+i

Pt+i
, rt+i ≡

Rt+i

Pt+i
, xM

t+i ≡
XM

t+i
Pt+i

, xR
t+i ≡

XR
t+i

Pt+i
, qt+i(j) ≡ Qt+i(j)

Pt+i
,

mi+1
t ≡ Mi+1

t
Pt+i

, λi
1t ≡ Λi

1tPt+i, λi
2t ≡ Λi

2tPt+i, πt+i ≡
Pt+i

Pt+i−1
, mt+1 ≡

Mt+1

Pt
.

Notice that money balances are normalized by the ‘previous period’ price level; this is

done so that the household’s budget constraint does not involve next period’s price level

which is not known at the time household decisions are made.

The equations governing the solution of this economy are:

(1 + τc)ci
t + ki+1

t +
∫ si

t

0
qt+i(j)dj + mi+1

t

= (1− τn)wt+ihini
t + [1 + δ + (1− τk)rt+i] ki

t +
mi

t
πt+i

+ xM
t+i + xR

t+i, i = 0, . . . , T − 1

(1 + τc)(1− si
t)ci

t =
mi

t
πt+i

+ xM
t+i, i = 0, . . . , T − 1

Uc(ci
t, 1− ni

t) = (1 + τc)
[
λi

1t + λi
2t(1− si

t)
]

, i = 0, . . . , T − 1

U`(ci
t, 1− ni

t) = λi
1t(1− τn)wt+ihi, i = 0, . . . , T − 1

λi
1tqt+i(si

t) = λi
2t(1 + τc)ci

t, i = 0, . . . , T − 1

λi
1t = βEt+i

{
λi+1

1t [1− δ + (1− τk)rt+i+1]
}

, i = 0, . . . , T − 2

λi
1t = βEt+i

{
λi+1

1t + λi+1
2t

πt+i+1

}
, i = 0, . . . , T − 2

k0
t = 0, kt

t = 0

m0
t = m, mt

t = m

rt = FK(Kt, Ng
t ; zt)

wt = FN(Kt, Ng
t ; zt)

Kt =
T−1

∑
i=0

ki
t−i
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Ne
t =

T−1

∑
i=0

hini
t−i

mt+1 =
T−1

∑
i=0

mi+1
t−i

mt+1 = µt
mt

πt

Ct =
T−1

∑
i=0

ci
t−i

xM
t =

(µt − 1)mt/πt

T

xR
t =

τcCt + τnwtNe
t + τkrtKt

T

qt(j) = wtγ(j)

Nc
t =

T−1

∑
i=0

∫ si
t−i

0
γ(j)dj

Ne
t = Ng

t + Nc
t

A.2 Non-monetary Model

A.2.1 Household’s Problem

The household’s Bellman equation is:

V(ki
t; i) ≡ max

{
U(ci

t, 1− ni
t) + βEt+iV(ki+1

t ; i + 1)

+ λi
t
[
(1− τn)wt+ihini

t + [(1− τk)rt+i + 1− δ]ki
t − (ci

t + ki+1
t )

]}

Euler equations and budget constraint:

ci
t + ki+1

t = (1− τn)wt+ihini
t + [(1− τk)rt+i + 1− δ]ki

t + xR
t , i = 0, . . . , T − 1

U2(ci
t, 1− ni

t) = λi
t(1− τn)wt+ihi, i = 0, . . . , T − 1

U1(ci
t, 1− ni

t) = λi
t, i = 0, . . . , T − 1

λi
t = βEt+iλ

i+1
t [(1− τk)rt+i+1 + 1− δ], i = 0, . . . , T − 2
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k0
t = 0, kt

t = 0

A.3 Computational Issues

Notice that the aggregate state vector includes the capital and money holdings of all co-

horts alive at a particular date. Individual decision rules depend on the entire state vector

(not merely a few selected moments) since the state vector is needed to form expectations

of future prices (which, in turn, depend on the future state vector). Fortunately, as pointed

out by Rı́os-Rull (1996), matters are greatly simplified if decision rules are linear. When

solving for decision rules when the stochastic elements of the model are in play, it is then

opportune to use a log linearization technique. See Klein (2000) for details on the partic-

ular technique employed in this paper.
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