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1 Introduction

The Diamond-Mortensen-Pissarides (DMP) model of search and matching is a widely ac-

cepted model of equilibrium unemployment. Yet, reasonably calibrated versions of this

model fail – by a wide margin – to deliver sufficient cyclical variability in key labor mar-

ket variables that are central to this theory, namely vacancies, unemployment, and the

vacancy-unemployment ratio (often referred to in the literature as labor market tightness);

see Andolfatto (1996), Merz (1995) and Shimer (2005).1

This paper departs from the textbook DMP model by adding worker search effort, mod-

eled as in Pissarides (2000, Ch. 5). As a result, workers can take direct action to affect

the outcome of their labor market search, a channel absent from most previous studies of

the DMP model, an exception being Merz (1995). Calibration of the search cost function

is disciplined by data from the American Time Use Survey (ATUS), including some inno-

vative work by Krueger and Mueller (2010) that provides evidence concerning the elasticity

of search with respect to unemployment benefits. The results below show that a model

with endogenous worker search effort can account for the bulk in the cyclical variation in

vacancies, unemployment, and the vacancies-unemployment ratio.

A second, innocuous change to the DMP framework is to drop what Rogerson, Shimer

and Wright (2005) refer to as the black box of the Nash bargaining solution determination of

wages in favor of competitive search which entails wage posting by firms and directed search

on the part of the unemployed; see Moen (1997) and Rogerson et al. (2005).2 Wage posting

is motivated by two facts. First, as documented by Hall and Krueger (forthcoming), wages of

newly-hired workers with less than college education are predominantly determined through

1Hagedorn and Manovskii (2008) show that when calibrated so that the flow utility while unemployed
is very close to the level of labor productivity, the textbook DMP model can deliver sufficient volatility in
labor market variables. Mortensen and Nagypál (2007) persuasively argue that the Hagedorn and Manovskii
calibration is unreasonable since it implies that workers and firms bargain over a surplus of around 5% of
labor productivity.

2As pointed out by Veracierto (2009), it is unclear what value should be used for the Nash bargaining
parameter, nor is it clear how this parameter might change over the business cycle. Section 5 shows how
the Nash bargaining parameter should change, in order to achieve allocative efficiency, over the cycle for a
popular variant of the matching function.
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wage posting, not bargaining. Second, working with data from the Current Population

Survey (CPS) reveals that over 85% of the cyclical variation in unemployment is due to

individuals with less than college education; see Figures 1 and 2. In summary, the bulk

of the cyclical variation in unemployment can be attributed to individuals with less than

college education, and their wages are primarily determined by wage posting.

In the search and matching literature with Nash bargaining, the so-called Hosios (1990)

condition is often applied so that the allocation is efficient. In brief, the Hosios condition

requires that the value of the worker’s bargaining parameter is equal to the elasticity of

the matching function with respect to unemployment; when the matching function is Cobb-

Douglas, this elasticity is the parameter on unemployment. Section 5 derives an appropriate

Hosios condition for the model with endogenous worker search effort and stochastic pro-

ductivity.3 Such a derivation is entirely unnecessary under competitive search since the

allocation is always efficient; it is in this sense that using competitive search can be said

to be innocuous. Furthermore, applying the Hosios condition when wages are determined

by Nash bargaining is straightforward only when the matching function is Cobb-Douglas.

While the Cobb-Douglas form is often chosen, other forms have been used in the literature;

see, for example, den Haan, Ramey and Watson (2000) and Hagedorn and Manovskii (2008).

For these alternative functional forms, imposing the Hosios condition would mean changing

the worker’s bargaining parameter over the cycle in order for the allocation to be efficient.

This complication is avoided with competitive search.

In Shimer (2005), the DMP model with Nash bargaining determination of wages and

fixed worker search effort accounts for roughly 1/10 of the standard deviation of vacancies,

unemployment and the vacancies-unemployment ratio. In contrast, the benchmark calibra-

tion explains just over 70% of the standard deviation of unemployment and the vacancies-

unemployment ratio, and almost 80% of that of vacancies. The mechanism behind this

results is as follows. An increase in productivity raises firms’ incentives to post more va-

3Shimer (2005) extends the Hosios condition to a stochastic setting with fixed search intensity.
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Figure 1: Unemployment by Education
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Notes: Source: Authors’ calculations from the Current Population Survey of the Bureau
of Labor Statistics, which is available from the NBER website. The sample includes adult
civilians aged 20-65 years who are in the labor force. uc refers to unemployment of individuals
who have at least a college degree; uhs refers to unemployment of those who have less than
a college degree; and u is unemployment measured using all individuals in the sample. The
key observation is that aggregate unemployment follows that of less educated workers more
closely than that of highly educated workers.
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Figure 2: Decomposition of Variation of Aggregate Unemployment
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Notes: As in Figure 1, u refers to overall unemployment. φct measures that portion of the
cyclical variation in the overall unemployment rate that can be attributed to college educated
individuals. Specifically, φct = ωtu

c
t + (1 − ωt)uhs where ωt is the fraction of the labor force

that is college educated and uhs is the average unemployment rate of high school educated
workers. Similarly, φhst = ωtu

c + (1 − ωt)uhst gives the proportion of overall unemployment
variation attributable to high school educated workers. This figure shows that aggregate
unemployment fluctuations are mainly driven by unemployment of less educated workers.
The coefficient of variation of these two time series over the sample period are CV (φc) =
0.035 and CV (φhs) = 0.154 whereas the coefficient of variation of overall unemployment
is CV (u) = 0.182. In other words, unemployment of the less educated group accounts
approximately 85% of aggregate unemployment variation over the sample period.
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cancies. Such a productivity improvement also leads firms to increase their posted wages in

order to increase their hiring rates. Higher wages lead workers to search more intensively. As

a result, search intensity is procyclical, a result common in DMP models with endogenous

search effort. This prediction is at variance with the empirical evidence in Shimer (2004).

Tumen (2012) has re-examined Shimer’s results. He argues that the unemployed use search

methods sequentially, not simultaneously, and so Shimer’s measure of search intensity – the

number of search methods employed during an unemployment spell – is flawed because the

number of search methods is positively associated with the length of an unemployment spell.

Tumen uses the number of search methods used per week of unemployment as his measure

of search intensity; he finds that search intensity is procyclical. The model’s prediction of

procyclical search intensity is also consistent with Krueger and Mueller (2010) who found

that worker search intensity increases with job seekers’ expected wages.4

Recalibrating so that search intensity is fixed, the model accounts for about 14% of the

standard deviation of unemployment, 38% of the variability in the vacancies-unemployment

ratio, and 59% of the volatility in vacancies. That is to say, endogenous search effort is an

important ingredient of the model, with its effects working most strongly through unemploy-

ment, and so the vacancies-unemployment ratio.

The model is also recalibrated so as to match the observed volatility of the vacancy-

unemployment ratio. As shown in Section 4.2, the resulting parameter values are not unrea-

sonable. This calibration can, in addition, account for virtually all of the cyclical variability

in both vacancies and unemployment.

The results in this paper would be vacuous if we were unconstrained in our choice of the

search cost function. Section 3.4 shows analytically that the properties of the cost function

are constrainted by the elasticity of the matching function with respect to the vacancy-

unemployment ratio. Empirical plausibility then places strong restrictions on the cost of

4Marinescu (2012) shows that the number of weeks of unemployment benefits has a negative impact on
the number of job applications at the state level; this result is consistent with Krueger and Mueller (2010)
and Tumen (2012).
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search function.

Yashiv (2000) appears to be the only paper that estimates the matching technology

when search intensity is endogenous; he used Israeli data.5 In general, ignoring search

intensity may be an important oversight. The results in Section 6 show that neglecting

search intensity introduces a large upward bias in the elasticity of the number of matches

with respect to vacancies; this result is consistent with the empirical work of Yashiv. For

the benchmark calibration, omitting search effort would lead one to erroneously conclude

that a 10% increase in vacancies would increase the number of matches by more than 5%

whereas the actual impact is less than 2%. Such a discrepancy should make one cautious in

interpreting results from equilibrium search and matching models with fixed search intensity,

particularly when quantitatively evaluating the effects of alternative public policies such as

the effects of unemployment benefits, employment subsidies, and job search assistance and

counciling.

Another, even more important implication of the findings in Section 6 concerns the Nash

bargaining parameter, which is central to standard search and matching theory. In the

literature, the Nash bargaining parameter is usually inferred from data on unemployment

and vacancies (Shimer, 2005; Mortensen and Nagypál, 2007). Specifically, guided by the

Hosios (1990) condition, a worker’s bargaining power is set to the the elasticity of matching

function with respect to unemployment. The results in Section 6 suggest that the common

method of estimating bargaining power exhibits a strong downward bias. For example, the

numerical results show that when the elasticity of matching with respect to unemployment is

0.456, the worker’s bargaining power parameter required to achieve the constrained efficient

allocation is not 0.456, but rather 0.802. Conversely, picking the bargaining parameter based

on the measured elasticity of the matching function with respect unemployment or vacancies

cannot always guarantee constrained efficiency; see the earlier discussion regarding matching

5Yashiv’s 2000 principle contributions are to estimate the various frictions in the matching process, in-
cluding the matching function, firm search, and worker search. He does not perform a quantitative evaluation
of the model like that contained herein.
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functions that deviate from the usual assumption of Cobb-Douglas.

An important issue that has arisen in the recent literature on the DMP model is the size

of the surplus of a match (the difference between the value of the match, and the outside

options of the firm and worker). While Hagedorn and Manovskii (2008) show that the DMP

model can successfully explain the cyclical volatility of vacancies and unemployment, they do

so by shrinking the surplus of a match to around 5% (the flow value of being unemployed is

roughly 95% of labor productivity). Mortensen and Nagypál (2007) argue that this surplus is

implausibly small since it implies that workers choose to work for an increase in their income

of 2.3% of productivity over what they would receive while unemployed. In the benchmark

model, the surplus of a match is around 12.5% of productivity, and workers increase their

flow utility by more than 12% over that received while unemployed.

The outline of the rest of the paper is as follows. Section 2 presents a dynamic, stochastic

model of equilibrium unemployment incorporating variable search intensity into a competi-

tive search model. Section 3 explores the steady-state properties of the model. The steady

state analysis is important for calibrating a number of key parameters in the model. The

model is calibrated and simulated in Section 4 in order to establish the model’s business

cycle properties. Two experiments are conducted. The first suppresses search intensity in

order to measure the impact of endogenous search on the moments of key labor market

variables. In the second experiment, the model is recalibrated so as to match the volatility

of the vacancy-unemployment ratio observed in the U.S. data. Section 5 extends the Hosios

condition to a setting with stochastic productivity and endogenous search intensity. Impli-

cations of variable search intensity on the aggregate matching technology are discussed in

Section 6. Section 7 concludes. The appendices provide detailed analytical derivations as

well as a description of the numerical procedures used to simulate the model.
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2 Model

2.1 Environment

The economy is populated by a measure one of infinitely-lived, risk-neutral workers and

a continuum of infinitely-lived firms. Individuals are either employed or unemployed. An

unemployed worker looks for a job by exerting variable search effort. The cost of searching

for a job depends on how intensively the worker searches. Let si ≥ 0 be the search intensity of

worker i. The cost of si units of search is c(si) where c is a twice continuously differentiable,

strictly increasing and strictly convex function. Flow utility of unemployed worker i is given

by z − c(si) where z ≥ 0. Normalize the cost of search so that c(0) = 0, implying that z

is flow utility of an unemployed worker who exerts zero search intensity. Flow utility of an

employed worker is the wage, w. Workers and firms discount their future by the same factor

0 < β < 1.

Each firm employs at most one worker. Per-period output of each firm-worker match is

denoted by p and evolves according to a stationary and monotone Markov transition function

G(p′|p) given by

p′ = 1− %+ %p+ σεε (1)

where ε is an iid standard normal shock, 0 < % < 1 and σε > 0.6 There is free entry for firms.

A firm finds its employee by posting a vacancy, at the per period cost k, when looking for

workers. All matches are dissolved at an exogenous rate λ. Matches are formed at random;

the matching technology is discussed shortly.

2.2 Wage determination

Wages are determined via competitive search instead of Nash bargaining. The setup follows

Rogerson et al. (2005). Given current productivity, p, a firm decides whether or not to post

a vacancy. If it does, the firm decides what wage to offer in order to maximize its expected

6As in Shimer (2005), mean productivity is normalized to 1.
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profits. An unemployed worker directs her search towards the most attractive job given the

current aggregate labor market condition.

Since separations are exogenous the shape of the wage-tenure profile has no impact on

job search so long as the expected present discounted value of the wage stream, Y, remains

the same. Assuming that the wage of a particular match does not change over time,7 the

per-period wage is w = (1− β(1− λ))Y . Then, a vacant job is fully characterized by (p, w).

Let W(p) denote the set of wages posted in the economy when aggregate productivity is p.

2.3 Matching technology

Matching between firms and workers operates as follows. Let si,j denote search effort by

worker i for job type j = (p, w) where it is understood that si,j can be non-zero for at most

one j if the person is unemployed and zero for all j if the person is employed (there is no

on-the-job search). Since a worker searches for at most one type of job, si = maxj{si,j}.

Total search intensity for a job of type j is Sj =
∫ 1

0
si,jdi. Denote total vacancies of type j

by vj. As in Pissarides (2000, Ch. 5), the total number of matches formed for a particular

job type is given by the Cobb-Douglas function,

Mj = µvj
ηSj

1−η (2)

where 0 < η < 1 and µ > 0. The (effective) queue length for a type j vacant job is given

by qj = Sj/vj, and the probability that a particular job is filled is given by α(qj) = µq1−ηj .

Denoting the measure of unemployed workers exerting non-zero search intensity for a type

j job by uj, the vacancy filling rate is increasing in average search intensity sj = Sj/uj, and

decreasing with labor market tightness θj = vj/uj. The probability that an unemployed

worker i finds a job of type j is f̃(qj, si,j) = (Mj/Sj) si,j = f(qj)si,j where f(qj) = µ/qηj . For

notational brevity, the individual index i is omitted for the rest of the paper.

7Shifts in the average wage are driven by the share of new jobs and their wages relative to the wages of
the old jobs. Section A.6 allows the wage of old matches to respond to productivity shocks.
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2.4 Value functions

Let the value of searching for a job paying wage w when aggregate productivity is p be given

by

Ũ(w, p) ≡max
sw,p

{
z − c(sw,p) + βf(qw,p)sw,p

∫
W (w, p′)dG(p′|p)+

+ β (1− f(qw,p)sw,p)

∫
U(p′)dG(p′|p)

}
.

(3)

Then,

U(p) ≡ max
w∈W(p)

{Ũ(w, p)} (4)

where we anticipate the result that there are a finite number of elements in W(p). In other

words, an unemployed worker can search for only one type of job, and will choose to search

for the job that yields the highest expected utility. A worker’s search effort is, then, the

optimal level associated with that job type.

The value of being employed is given by

W (w, p) = w + βλ

∫
U(p′)dG(p′|p) + β(1− λ)

∫
W (w, p′)dG(p′|p). (5)

A firm’s value of a filled job paying the wage w is given by the following asset-pricing

equation:

J(w, p) = p− w + β(1− λ)

∫
J(w, p′)dG(p′|p). (6)

Finally, the value of a vacancy when productivity is p is given by

V (p) = max
w

{
−k + βα(qw,p)

∫
J(w, p′)dG(p′|p)

}
. (7)

The remainder of the paper establishes the main properties of the equilibrium.8 For

expositional purposes, the analysis proceeds in two steps. Section 3, analyzes the steady

8The formal definition of the labor market equilibrium is provided in Appendix A.
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state of the model. In particular, setting p = 1, the model is solved analytically and key

parametric relationships that are important to the calibration of the model are obtained. In

Section 4, productivity is once again stochastic, and the main properties of the model are

established numerically.

3 Steady state analysis

3.1 Workers

When there are no shocks to productivity, that is when p = 1, a job is fully characterized

by its per-period wage w. Given any posted wage w ∈ W , the value of being unemployed is

given by

U = max
sw
{z − c(sw) + βf(qw)sw (W (w)− U) + βU} (8)

and the value of being employed with wage w is

W (w) =
w + βλU

1− β(1− λ)
. (9)

A worker will take the queue length, qw, as given. Differentiating the right hand side of

equation (8) with respect to search effort, sw, gives

c′(sw) = βf(qw)(W (w)− U).

Combining this result with equations (8) and (9), it can be shown that, for any posted wage

w, the optimal search intensity must satisfy the following:

w − z =
1− β(1− λ)

βf(qw)
c′(sw) + c′(sw)sw − c(sw). (10)
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3.2 Firms

Firms making their vacancy posting decision will take equation (10) as given. Following

Rogerson et al. (2005), substitute equation (10) into equation (7) for w and thereby reduce

a firm’s problem to the following:

max
qw

{
α(qw)

(
p− z − 1− β(1− λ)

βf(qw)
c′(sw)− c′(sw)sw + c(sw)

)}
. (11)

Solving for the optimal qw yields

p− z =
1− β(1− λ)

βα′(qw)
c′(sw) + c′(sw)sw − c(sw). (12)

3.3 The steady state equilibrium

Subtract equation (10) from equation (12) to obtain

p− w
1− β(1− λ)

=
c′(sw)

β

(
1

α′(qw)
− 1

f(qw)

)
. (13)

The left hand side of equation (13) is merely the value of a matched firm; see equation (6).

On the other hand, using equation (7) and the free entry condition gives

k = βα(qw)
p− w

1− β(1− λ)
. (14)

Now, combining equations (13) and (14) leaves

k = c′(sw)

(
α(qw)

α′(qw)
− qw

)
. (15)

The labor market equilibrium is characterized by equations (12), (14) and (15). It is not

immediately clear that these equations yield a unique solution for a given productivity level,

p. For example, if workers search with less intensity, firms create fewer jobs. Similarly, if
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workers search with greater intensity, firms create more jobs. Therefore, there is a possibility

of non-unique wages. However, the following proposition rules out that possibility.

Proposition 1 (Same jobs). All firms posting a vacancy choose the same wage.

Proof. Strict convexity of the worker cost of search function c along with equation (15)

implies that worker search intensity, sw, and queue length, qw, have a negative relationship.

Combining this fact with equation (12), it can be shown that qw is unique across vacancies.

Then, equation (14) implies that w is the same across all jobs.

Proposition 1 implies that there is only one type of job in steady state. The uniqueness

of qw along with equation (15) implies that all unemployed workers exert the same search

intensity. Given these results, we drop the subscripts of s, q and θ.

3.4 The role of variable search intensity

Now consider the response of the model economy to a permanent shift in productivity.

Proposition 2 (Permanent shock). An increase in productivity raises both search inten-

sity and the vacancy-unemployment ratio and therefore raises the job-finding rate.

Proof. Given the inverse relationship between queue length, q, and worker search intensity,

s, the right hand side of equation (12) is strictly increasing in s. Therefore, s increases

with productivity, p. A higher s and a lower q means a higher vacancy-unemployment ratio.

More vacancies per unemployed worker along with higher search intensity imply a higher

job-finding rate.

Re-write equation (15) in the following form:

θ =
η

(1− η)k
sc′(s). (16)

Given the strict convexity of c, equation (16) implies that market tightness, θ, increases

strictly with search intensity, s. More importantly, in light of Proposition 2, equation (16)
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suggests that volatility of the vacancy-unemployment ratio is closely related to the search

cost. This relation is quantified in the following section.

Before going to the numerical analysis, we extend the analytical results in Hagedorn

and Manovskii (2008) and Mortensen and Nagypál (2007) to the model with variable search

intensity. Specifically, we calculate the elasticity of the vacancy-unemployment ratio to

productivity, defined as d ln θ
d ln p

, and compare it with that in a standard model or, equivalently,

the model with fixed search intensity.

Let η̃ denote the implied (or empirical) elasticity of the job-finding rate with respect to

the vacancy-unemployment ratio, that is,

η̃ =
d ln(f(q)s)

d ln θ
=
d ln(qα(q)s)

d ln θ
=
d ln(θα(q))

d ln θ
= 1 +

d lnα(q)

d ln θ
. (17)

Since ln θ = ln s− ln q, equation (17) can be written as

η̃ − 1 =
εq,s

1− εq,s
d lnα(q)

d ln q
, (18)

where εq,s = d ln q
d ln s

. Recalling that θ = s/q, differentiation of equation (16) gives εq,s = − sc′′(s)
c′(s)

in equilibrium.

Differentiate ln θ = ln s− ln q with respect to ln p to obtain the elasticity of the vacancy-

unemployment ratio θ with respect to productivity p:

d ln θ

d ln p
= (1− εq,s)

d ln s

d ln p
, (19)

Now, without loss of generality, normalize the search intensity to 1 so that s = 1.9 Take

9Suppose that the search intensity is normalized to x > 0. Let the associated search cost function be
c̃. Denote the vacancy cost and the coefficient of the matching function by k̃ and µ̃, respectively. The
equilibrium allocations continue to be characterized by equations (12) and (15). Then, it can be seen that
the same allocation is obtained by choosing the cost function to satisfy c̃′(x)x− c̃(x) = c′(1)− c(1) > 0 while

setting k̃ = xc̃′(x)
c′(1) k and µ̃ = xη c̃′(x)

c′(1) µ.
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logs of equation (12) and totally differentiate:

1

p− z
dp =

1−β(1−λ)
βα′(q)

c′′(s) + c′′(s)s+ c′(s)− c′(s)
1−β(1−λ)
βα′(q)

c′(s) + c′(s)s− c(s)
ds−

1−β(1−λ)
β

c′(s)α′′(q)
[α′(q)]2

1−β(1−λ)
βα′(q)

c′(s) + c′(s)s− c(s)
dq.

Noting that d ln p = dp
p

and using the fact that s = 1,

p

p− z
d ln p =

1−β(1−λ)
βα′(q)

c′′(1) + c′′(1)

1−β(1−λ)
βα′(q)

c′(1) + c′(1)− c(1)
d ln s−

1−β(1−λ)
β

c′(1)α′′(q)
[α′′(q)]2

1−β(1−λ)
βα′(q)

c′(1) + c′(1)− c(1)
qd ln q

Use εq,s = d ln q
d ln s

to eliminate d ln q on the right-hand side and gather terms:

p

p− z
d ln p =

1−β(1−λ)
βα′(q)

c′′(1) + c′′(1)− 1−β(1−λ)
β

c′(1)α′′(q)
[α′(q)]2

qεq,s
1−β(1−λ)
βα′(q)

c′(1) + c′(1)− c(1)
d ln s.

Recall that α(q) = µq1−η, α′′(q)q
α′(q)

= −η. Further, α′(q) = (1 − η)f(q). Substitute these

expressions into the equation above:

p

p− z
d ln p =

1−β(1−λ)
β(1−η)f(q)c

′′(1) + c′′(1) + 1−β(1−λ)
β(1−η)f(q)c

′(1)ηεq,s
1−β(1−λ)
β(1−η)f(q)c

′(1) + c′(1)− c(1)
d ln s.

Next, recall εq,s = − sc′′(s)
c′(s)

, or c′(1)εq,s = −c′′(1):

p

p− z
d ln p =

1−β(1−λ)
βf(q)

c′′(1) + c′′(1)

1−β(1−λ)
β(1−η)f(q)c

′(1) + c′(1)− c(1)
d ln s.

Rewrite the above as

d ln s

d ln p
=

p

p− z

1−β(1−λ)
β(1−η)f(q)

c′(1)
c′′(1)

+ c′(1)−c(1)
c′′(1)

1−β(1−λ)
βf(q)

+ 1
.

From equation (18) and εq,s = − c′′(1)
c′(1)

, it follows that 1 − η = c′(1)+c′′(1)
c′′(1)

(1 − η̃); substituting
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into the above equation gives

d ln s

d ln p
=

p

p− z
×

1−β(1−λ)
βf(q)(1−η̃)

c′(1)
c′′(1)+c′(1)

+ c′(1)−c(1)
c′′(1)

1−β(1−λ)
βf(q)

+ 1
. (20)

Now combining equations (19) and (20) along with εq,s = − c′′(1)
c′(1)

, it can be seen that

d ln θ

d ln p
=

p

p− z
×

1−β(1−λ)
βf(q)(1−η̃) + (1− c(1)

c′(1)
)(1 + c′(1)

c′′(1)
)

1−β(1−λ)
βf(q)

+ 1
. (21)

Given convexity of the search cost function it follows that 0 < c(1)
c′(1)

< 1 and c′(1)
c′′(1)

> 0, and

therefore, C ≡
(

1− c(1)
c′(1)

)(
1 + c′(1)

c′′(1)

)
> 0. In steady state, the unemployment rate is λ

λ+f(q)
.

Given that the average unemployment rate for the U.S. is around 6% (Shimer, 2005), it

follows that λ
λ+f(q)

' 0.06 which implies f(q) � λ. When the model period is relatively

short, β is close to 1 and so 1−β(1−λ)
βf(q)

' λ
f(q)

is much smaller than 1. Further, the observed

elasticity η̃ ' 0.5 (Petrongolo and Pissarides, 2001; Mortensen and Nagypál, 2007) and so

1−β(1−λ)
βf(q)

1
1−η̃ '

λ
f(q)

1
1−η̃ is also much smaller than 1. The upshot is that the magnitude of the

elasticity d ln θ
d ln p

is dictated by p
p−z and

(
1− c(1)

c′(1)

)(
1 + c′(1)

c′′(1)

)
.

Clearly, the magnitude of this elasticity can be made arbitrarily large by assuming a

cost function such that c(1)
c′(1)

� 1 and c′(1)
c′′(1)

� 1. However, doing so will lead to highly

counterfactual implications for the matching technology. Specifically, using equation (18),

the fact that d lnα(q)
d ln q

≤ 1, and εq,s = − sc′′(s)
c′(s)

,

C =

(
1− c(1)

c′(1)

)(
1 +

c′(1)

c′′(1)

)
< 1 +

c′(1)

c′′(1)
=

1

1− η̃
d lnα(q)

d ln q
≤ 1

1− η̃
' 2. (22)

So, the empirical elasticity of the matching function, η̃, dictates that C can not be much

larger than 2. In fact, if search costs are given by a power function – a commonly-used

specification10 – then the value of C is much lower than 2. Specifically, let the function c

10See, for example, Christensen, Lentz, Mortensen, Neumann and Werwatz (2005).
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given by the following power function:

c(s) = χsγ, (23)

where χ > 0 and γ > 1. Under such a parametric specification, C = 1. In other words,

empirical plausibility places strong restrictions on the magnitude of C and so on the cost

function c.

With the cost function in equation (23), equation (21) becomes

d ln θ

d ln p
=

p

p− z
×

1−β(1−λ)
βf(q)(1−η̃) + 1

1−β(1−λ)
βf(q)

+ 1
. (24)

For comparison purposes, we also calculate the above elasticity for the model with fixed

search intensity. Here the model with fixed search intensity refers to the model where search

intensity is fixed to 1 while the elasticity of the matching function and the unemployment rate

are matched with their empirical counterparts. Under fixed search intensity, the elasticity is

given by11

d ln θF

d ln p
=

p

p− z̃
×

1−β(1−λ)
βf(q)(1−η̃) + 1

1−β(1−λ)
βf(q)

+ 1
, (25)

where z̃ = z − c(1). Comparing equations (24) and (25) leads to the following key observa-

tions:

a) The elasticity of vacancy-unemployment ratio with respect to productivity is mainly

determined by p
p−z ,12 which is somewhat consistent with Shimer (2005) and Hagedorn

and Manovskii (2008).

b) However, an important difference is that the net flow utility of an unemployed worker

11See Appendix B.4 for derivation. It can be seen that the elasticity given by equation (25) is the same
as that obtained by Hagedorn and Manovskii (2008) and Mortensen and Nagypál (2007) after imposing the
Hosios condition while setting the flow utility of unemployment to z − c(1).

12It should be noted that one could consider an alternative specification of the search cost so that the
magnitude of C is close to 2. However, the numerical analysis in Section 4 shows that the function in
equation (23) works well for the model in the sense that the implied volatility of unemployment and vacancies
are remarkably close to their empirical counterparts; these volatilities are not targeted during the calibration.
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in the model with variable search intensity is z − c(1) while that in the models with

fixed search intensity is simply z.

4 Business cycle properties

Here, productivity is stochastic and the model is solved numerically. Details of the numerical

solution of the stochastic model are provided in Appendix A. Before calibrating the model,

Proposition 1 is extended to the stochastic case.

Proposition 3 (Uniqueness). Given current productivity, all firms choose to post the same

wage, and unemployed workers looking for a job in a given time period exert the same search

intensity.

Proof. See Appendix A.

4.1 Calibration

Standard parameters

The length of the time period is a quarter of a month, which will be referred to as a week.

The discount factor β is set to 1/1.041/48, a value consistent with an annual real interest

rate of 4%. The separation rate is set to that in Shimer (2005); normalizing it to a weekly

frequency, λ = 0.1
12

= 0.0083.

The productivity process G(p′|p) is approximated by a five-state Markov chain using

the method of Rouwenhorst (1995).13 The following targets for the productivity process

are taken from Hagedorn and Manovskii (2008): the quarterly autocorrelation of 0.765,

and the unconditional standard deviation of 0.013 for the HP-filtered productivity process

with a smoothing parameter of 1600. At a weekly frequency, these targets require setting:

% = 0.9903 and σε = 0.0033.

13Galindev and Lkhagvasuren (2010) show that for highly persistent autoregressive processes, the method
of Rouwenhorst (1995) outperforms other commonly-used discretization methods.
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Normalization

Following Shimer (2005), the target for the mean vacancy-unemployment ratio is 1.14 Then,

it follows that the effective queue length is q = 1 in steady state and therefore, recalling that

productivity, p, has been normalized to 1, equations (12) and (15) can be rewritten as

z = 1− (1− β(1− λ))χγ

β(1− η)µ
− χ(γ − 1) (26)

and

k = χγ
η

1− η
. (27)

Given the rest of the parameter values, z and k are chosen according to equations (26)

and (27). The value of µ, the scaling parameter in the matching function, is chosen by

targeting an average unemployment rate of 5.7% (Shimer, 2005).

The elasticity of matches to vacancies

The key parameter of the matching technology is the elasticity of matches with respect to

vacancies, εM,v = ∂ lnM
∂ ln v

. When search intensity is fixed, this elasticity is given by η. There

is a large literature that estimates η under the assumption of fixed search intensity; see,

for example, Petrongolo and Pissarides (2001) for a recent survey of empirical studies on

the matching technology. However, to the best of our knowledge, only Yashiv (2000) has

estimated the matching technology with endogenous search intensity. Section 6, shows that

when search intensity is allowed to vary, the measured elasticity of matches to vacancies,

εM,v, differs from η.

Appendix A shows that equation (15) holds even in the case of stochastic productivity.

14As in Shimer (2005), this normalization is inconsequential to the results. Consider another value, say
θ, for the mean vacancy-unemployment ratio. Then, it can be seen that multiplying k and µ by θ and θ

η
,

respectively, leaves the equilibrium allocations given by equations (12) and (15) unaffected.
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Thus, combining equation (15) with equations (23) and (27) gives

sγ = θ. (28)

On the other hand, given the uniqueness result in Proposition 1, total search intensity is

simply S = us where u denotes unemployment. Therefore, equations (2) and (28) imply

that, under variable search intensity, the equilibrium number of matches is given by

M = µv1−(1−η)(1−
1
γ )u(1−η)(1−

1
γ ). (29)

At this point, there are two important conclusions:

a) The property that the matching function is constant returns to scale with respect to

unemployment and vacancies is preserved under variable search intensity. This result

is consistent with the fact that empirical studies do not reject constant returns to scale

in the matching functions; see the survey of Petrongolo and Pissarides (2001).15

b) Under endogenous job search effort, the implied elasticity of matches with respect to

vacancies is given by

εM,v = 1− (1− η)

(
1− 1

γ

)
. (30)

Given the value of γ, η is chosen such that εM,v = 0.544, an elasticity estimate obtained by

Mortensen and Nagypál (2007).

The search cost: time spent on job search

The scaling parameter, χ, is calibrated such that the average disutility per minute of work is

equal to the average disutility per minute of job search. Given that average search intensity

15The fact that the number of matches exhibits constant returns to scale is not specific to the Cobb-
Douglas matching function. To see this, consider a matching function M̃(v, us) which exhibits a constant
returns to scale. Using equation (15), it can be seen that s = F ( vu ) for some function F . Then, the total

number of matches is given by M̃(v, uF ( vu )) which, in turn, exhibits constant returns to unemployment and
vacancies.
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is normalized to one, the average flow cost of job search is approximately χ. The average

disutility of job search is, then, χ/Tu where Tu is time spent on job search. Recall that z

represents the per-period flow of utility of an unemployed worker who exerts zero search

effort. This flow utility consists of unemployment benefits received during unemployment,

b, and the imputed value of leisure, `:

z = b+ `. (31)

b is set to 0.3 as in Mortensen and Nagypál (2007). The disutility of work is, then, ` and the

disutility per unit time is `/Tw where Tw is time spent working. Consequently, the parameter

χ is set such that

χ

Tu
=

`

Tw
. (32)

According to the 2008 ATUS, a typical unemployed worker spends 40.47 minutes per weekday

on job search activities. The same survey reveals that employed workers spend, on average,

39.99 hours per week working. These numbers imply that the ratio of search time to work

time is Tu/Tw = 0.0844.

The only remaining parameter is γ which governs the curvature of the workers’ search cost

function. This parameter is important to the analysis since the responsiveness of time spent

on job search to aggregate productivity depends heavily on the value of γ. For example, if

γ is very high, there will be very low variation in search intensity and the model will behave

similarly to those in the previous studies. Ideally, the value of γ would be pinned down using

data on the cyclical volatility of time spent on job search. However, the ATUS only covers

a relatively short period of time – 2003 to 2009 – making it difficult to measure the cyclical

volatility of time spent on job search since the data cover less than one business cycle.16

16Furthermore, there are only a few hundred unemployed workers in the ATUS each year, and the amount
of time devoted to searching for a job each day differs substantially across workers; see Krueger and Mueller
(2010, 2011). Therefore, time series estimates using this data will be prone to bias (or subject to large
confidence intervals.) Krueger and Mueller (2010) get around these limitations by using cross-sectional
variation in unemployment benefits, eligibility and dependent allowances across states while controlling for
a rich set of worker characteristics.
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Equations (12) and (15) provide useful insight into how to quantify the responsiveness of

search intensity to the labor market conditions. These two equations give

p− (b+ `) =
1− β(1− λ)

βµ

(
k

η

)η (
χγ

1− η

)1−η

s(γ−1)(1−η) + χ(γ − 1)sγ, (33)

where, as above, ` is the imputed value of leisure. The curvature parameter γ is pinned down

by calibrating to the elasticity of job search with respect to unemployment benefits, denoted

εs,b. Using cross-state differences, Krueger and Mueller (2010) find that time spent on job

search is inversely related to the generosity of unemployment benefits. They estimate that

the elasticity of time spent on job search with respect to unemployment benefits is between

−2.235 and −1.579. The calibration target for εs,b is −1.907, the value halfway between

the two estimates.17 This elasticity is computed in the model as follows. The stochastic

model is solved for the benchmark value of unemployment benefits, b. The model is, then,

re-solved for a value of b that is 1% higher than its benchmark value. The elasticity is

then calculated as the percentage change in (average) search time divided by the percentage

change in unemployment benefits.

The value of γ, 2.3195, means that worker search costs are roughly quadratic. This finding

is consistent with the estimates of Yashiv (2000) using Israeli data, and with Christensen

et al. (2005) who used micro data on wages and employment.

22



Table 1: Calibration Targets of the Benchmark Model

Model Data

unemployment, u 0.057 0.057
the elasticity of matches w.r.t. vacancies, εM,v 0.544 0.544
average job search time relative to work hours, E(χsγ)/(z − b) 0.084 0.084
the elasticity of time spent on job search w.r.t. benefits, εs,b −1.907 −1.907

4.2 Results

For the remainder of the paper, the current calibration will be referred to as the benchmark

model. Table 1 shows that the model matches the calibration targets.18 Table 2 displays

the parameters of the benchmark model. The average search cost, E(χsγ),19 measured

relative to labor productivity, is 0.05. Average flow utility while unemployed is approximately

0.869, expressed relative to labor productivity, implying that the employment surplus is

approximately 13.1 percent of labor productivity.

Table 3 presents Hagedorn and Manovskii’s (2008) summary statistics of quarterly U.S.

data, 1951:1–2004:4. Table 4 shows predictions of the benchmark model. The results show

that the benchmark model accounts for 70 percent of the observed volatility of both the

vacancy-unemployment ratio and unemployment, and nearly 80% of the percentage stan-

dard deviation of vacancies. Search intensity is pro-cyclical over the business cycle with a

standard deviation of 8 percent.20 To put the variability of search effort into perspective,

the benchmark model’s prediction for this moment is close to its prediction for the standard

17Among workers with lower annual income, Krueger and Mueller (2010) find that the elasticity of search
intensity is −2.7. This value implies that search intensity is more elastic among lower educated workers, who
have much higher cyclical unemployment than their more educated counterparts. This result is reassuring in
that Figure 2 shows that the bulk of U.S. unemployment variability is due to workers with low educational
attainment.

18To measure the targeted moments and predictions of the model, the model economy is simulated for
5,000,000 weeks. In computing moments, all variables are converted to a quarterly frequency as in Hagedorn
and Manovskii (2008). To measure the business cycle fluctuations, the simulated quarterly data is detrended
by logging and applying the HP-filter with a smoothing parameter of 1600.

19
E(X) denotes the time average of an arbitrary variable X.

20In the spirit of the business cycle literature which defines the cycle as deviations of output from trend,
here the cycle is defined as deviations of labor productivity from trend.

23



Table 2: Parameters of the Benchmark Model

Parameter Value Description

β 0.9992 the time discount factor (= 1/1.041/48)
λ 0.0083 the separation rate (= 0.1/12)
% 0.9903 persistence of the productivity shock
σp 0.0241 standard deviation of the productivity shock
µ 0.1438 the coefficient of the matching technology
k 0.0301 the vacancy creation cost
b 0.3 unemployment insurance benefit
z 0.9212 flow utility of unemployment when search intensity is zero
χ 0.0524 the average search cost
η 0.1984 the parameter of the matching technology
γ 2.3195 the power of the search cost function

Table 3: Hagedorn and Manovskii’s (2008) summary statistics of quarterly US data

u v v/u p

Standard deviation 0.125 0.139 0.259 0.013

Autocorrelation 0.870 0.904 0.896 0.765

Cross-correlation u 1 −0.919 −0.977 −0.302
v 1 0.982 0.460
v/u 1 0.393
p 1

deviation of unemployment. The model performs reasonably well along other dimensions.

Hagedorn and Manovskii (2008) estimate that the elasticity of wages with respect to

productivity is 0.449 and target this elasticity in their calibration. In the benchmark model,

the elasticity of wages of new matches with respect to productivity is εw,p = 0.472. This

elasticity is somewhat comparable to the one targeted by Hagedorn and Manovskii (2008),

although it should be noted that the elasticity of the wages of new matches is calculated

under the assumption that the wage of a particular match does not change over time. In

Appendix A.6, this assumption is relaxed; depending on how frequently wages of old matches

are re-negotiated, the elasticity of the average wage with respect to productivity ranges

between 0.041 (if the wages of old matches are not re-negotiated at all) and 0.967 (if the
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Table 4: Results from the Benchmark Model

u v v/u s p

Standard deviation 0.089 0.108 0.186 0.080 0.013

Autocorrelation 0.829 0.614 0.763 0.763 0.765

Cross-correlation u 1 −0.777 −0.931 −0.931 −0.915
v 1 0.953 0.953 0.918
v/u 1 1 0.972
s 1 0.972
p 1

Notes: As in Hagedorn and Manovskii (2008), the moments are measured after converting
the variables to a quarterly frequency and then removing their trends using the HP-filter
with a smoothing parameter of 1600.

wages of old matches are re-negotiated following each aggregate shock). Therefore, it makes

a little sense to target the elasticity of the wage with respect to productivity in a model

with wage posting. At the same time, it also means that one can target any level of the

elasticity in the above range by introducing an additional parameter for the frequency of

wage renegotiation.

The net impact of variable search intensity

How much of the success of the benchmark model can be attributed to variable search

intensity? To answer this question, the model is solved while fixing the search intensity.

The solution method of the stochastic model with fixed search intensity is provided in Ap-

pendix B. In the absence of shocks to productivity, the model with fixed search intensity is

identical to the competitive search model of Rogerson et al. (2005).

Two cases are considered. First, the model is solved while fixing the search intensity at

one. This restriction is referred to as F-1. Table 5 shows the implications of fixed search

intensity on the volatility of labor market variables. Fixing search intensity reduces the

percentage standard deviation of the vacancy-unemployment ratio by almost a half. While

the percentage standard deviation of vacancies falls by around 20%, that of unemployment
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Table 5: Labor Market Volatility Under Fixed Search Intensity

u v v/u

Data 0.125 0.139 0.259
Benchmark Model 0.089 0.108 0.186
Fixed Search Intensity: F-1 0.018 0.082 0.099
Fixed Search Intensity: F-2 0.051 0.059 0.104

Notes: As in Hagedorn and Manovskii (2008), the moments are measured after convert-
ing the variables to a quarterly frequency and then removing their trends by logging then
applying the HP-filter with a smoothing parameter of 1600.

is reduced by a factor of 80%, leaving its volatility at just under 15% of that seen in the data

(compared to over 70% for the benchmark model).

The results show that approximately 34% (' 0.186−0.099
0.259

) of the observed volatility of

the vacancy-unemployment ratio is explained by variable search effort. Repeating the same

calculation for unemployment, search intensity explains approximately 57% (' 0.089−0.018
0.125

) of

the volatility of cyclical unemployment. By this same metric, search intensity accounts for

about 19% (' 0.108−0.082
0.139

) of the volatility of vacancies. In other words, search intensity has a

much larger impact on the percentage standard deviation of unemployment than vacancies.

Clearly, under specification F-1, the implied elasticity of matches with respect to vacancies

is εM,v = η = 0.1984, which is much lower than its empirical counterpart 0.544. To target

the latter under fixed search intensity, the model is simulated while setting η to 0.544 and

keeping the search intensity at one. This restriction is referred to F-2 in Table 5. The results

show that fixing search intensity while targeting the elasticity of the matching function has a

smaller effect on unemployment but a slightly larger impact on vacancies when compared to a

model which only fixes search intensity. However, the volatility of the vacancy-unemployment

ratio remains almost the same with what is obtained under F-1.
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Table 6: Calibration: Targeting the volatility of the vacancy-unemployment ratio

Model Data

unemployment, u 0.057 0.057
the elasticity of matches w.r.t. vacancies, εM,v 0.544 0.544
time spent on job search relative to work hours, E(χsγ)/(z − b) 0.084 0.084
the standard deviation of the vacancy-unemployment ratio 0.259 0.259

Table 7: Parameters: Targeting the volatility of the vacancy-unemployment ratio

µ k z χ η γ

0.1489 0.0110 0.9383 0.0539 0.0925 2.010

Notes: The table displays the parameter values that are different than those in the bench-
mark model. The parameters β, λ, % and σp are common with the benchmark model. See
Table 2.

Targeting the volatility of the vacancy-unemployment ratio

How volatile must search intensity be in order to generate the observed volatility of the

vacancy-unemployment ratio? Here, the model is recalibrated for a variety of values of γ,

the curvature parameter in the workers’ cost of search. The key observation is that there is

a value of γ such that the model’s prediction for the volatility of the vacancy-unemployment

ratio matches that observed in the data; see Tables 6 to 8 for details. The value of γ that

achieves this feat is somewhat smaller than in the benchmark model (2.010 compared to

2.3195). The other parameters that end up substantially changed are: k, the cost of posting

a vacancy (0.0110, down from 0.0301 in the benchmark calibration), and η, the weight on

vacancies in the matching function (0.0925, compared to 0.1984). Remarkably, while only the

volatility of the vacancy-unemployment ratio was targeted during this exercise, the model

comes close to matching the volatility of both unemployment (0.123 versus 0.125 in the data)

and vacancies (0.153 compared to 0.139).

A key issue in Hagedorn and Manovskii (2008) is how much surplus workers are bar-

gaining over. In their calibration, the flow value of unemployment is 95.5% of productivity.

Mortensen and Nagypál (2007) persuasively argue that this value is implausibly large since it
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Table 8: Predictions: Targeting the volatility of the vacancy-unemployment ratio

u v v/u s p

Standard deviation 0.123 0.153 0.259 0.129 0.013

Autocorrelation 0.831 0.609 0.760 0.760 0.765

Cross-correlation u 1 −0.760 −0.923 −0.923 −0.895
v 1 0.951 0.951 0.881
v/u 1 1 0.945
s 1 0.945
p 1

Notes: See notes to Table 5.

implies that workers are bargaining over a surplus of 4.5% of productivity, and that workers

end up choosing to work to increase their income by 2.3% of productivity. Table 7 shows

that flow utility while unemployed, E(z − χsγ), is 88.4% of productivity. Those who do

work do so to increase their flow utility by 11.5% of productivity, much larger than that in

Hagedorn and Manovskii.

Under this calibration, the cyclical variation of search intensity is nearly 13%, compared

to 8% for the benchmark model. The elasticity of search intensity with respect to benefits

is −2.9 which is slightly higher (in absolute terms) than was targeted in the benchmark

model. However, this value is close to −2.7, the elasticity estimate reported by Krueger

and Mueller (2010) for workers with lower annual income. Moreover, this value is within

the 95% confidence interval of the smaller (in absolute terms) elasticity estimate, −1.6,

reported by Krueger and Mueller for all workers. These observations suggest that the model

calibrated to the cyclical volatility of the vacancy-unemployment ratio does not overstate

the responsiveness of search intensity to labor market conditions.
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5 Nash bargaining and the Hosios condition

Suppose, instead, that wages are determined via Nash bargaining. That is,

w = argmax
w

[W (w, p)− U(p)]1−ψ [J(w, p)− V (p)]ψ

where ψ is the bargaining power of the firm.

Deriving the Hosios condition for the model with endogenous worker search effort requires

the first-order condition of equation (4) with respect to s:

c′(s) = βf(q)Ep(W (w, p′)− U(p′)). (34)

The free entry condition implies V (p) = 0; equation (7) can, then, be expressed as

k = βα(q)EpJ(w, p′). (35)

Now let Ξp denote the match surplus, that is, Ξp = W (w, p) + J(w, p) − U(p) for all p.

Then, as in Mortensen and Nagypál (2007), the match surplus can be written

W (w, p)− U(p)

1− ψ
= Ξp =

J(w, p)

ψ
(36)

for all p. Using equations (34) to (36), it can be seen that

k =
ψ

1− ψ
c′(s)q. (37)

As mentioned earlier, equation (15) holds even in the case of stochastic productivity. Then,

combining that equation with equation (37), it can be seen that the solutions obtained under

competitive search and Nash bargaining coincide when η = ψ. The latter extends the Hosios

condition to a setting with stochastic productivity and endogenous search intensity.
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It is important to note that the key to this equivalency is the Cobb-Douglas matching

function. Thus, it is misleading to say that the equivalency result always holds. For example,

under the matching function m(v, S) =
vS

(va + Sa)1/a
, where a > 0, (den Haan et al., 2000;

Hagedorn and Manovskii, 2008), equation (15) becomes

k = c′(s)q1+a. (38)

Therefore, the equivalency does not hold unless the bargaining power ψ in equation (37)

varies with the queue length q according to the following equation:

ψ =
qa

1 + qa
. (39)

More importantly, using equations (12) and (15), it can be seen that for the allocation

to be efficient, the bargaining power must change with search intensity, s, the vacancy-

unemployment ratio, θ, and aggregate productivity, p.

6 Implications on the matching technology

As stated earlier, only Yashiv (2000) has estimated the matching technology when search

intensity is endogenous, and he used Israeli data, not U.S. data. In this section, we analyze

the implications of search intensity on labor-market matching.

6.1 Interdependence of matching and search intensity

Earlier, it was shown that under endogenous job search effort, the elasticity of the number

of matches with respect to vacancies is given by

εM,v = 1− (1− η)

(
1− 1

γ

)
.
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When γ is infinity (equivalently, search intensity is fixed), the elasticity of matches with

respect to vacancies is η. Consequently, the matching technology with fixed search effort

used in the previous studies can be thought of as a special case of the one considered in this

paper.

Another important observation is that the matching technology parameter η differs sub-

stantially from εM,v, the elasticity measured directly from data on cyclical unemployment,

vacancies and matches (see equation (29)). Specifically, since γ > 1 and 0 < η < 1, εM,v > η.

For example, for the benchmark calibration, η = 0.1984 and εM,v = 0.544. Thus, if one

abstracts from variable search intensity, one would make an erroneous conclusion that a one

percent increase in vacancies will raise the number of matches by more than 0.5 percent

whereas the actual impact could be less than 0.2 percent.

These results show that the matching technology and the search cost are intimately

related. To estimate the two functions simultaneously requires an equilibrium framework

that allows for endogenous search effort. This paper offers one such a framework.

6.2 Shifts in labor-market matching

Throughout this paper, labor market fluctuations have been modeled as productivity shocks.

However, Mortensen and Nagypál (2007) point out that the correlation between labor pro-

ductivity and the vacancy-unemployment ratio is less than unity and emphasize the impor-

tance of other omitted driving forces. Consistent with their finding, empirical studies that

employ linear and log-linear regressions to estimate matches as a function of unemployment

and vacancies yield R2s in the range of 0.4 to 0.9. In other words, a sizable fraction of the

variation of matches is not explained by shifts in unemployment and vacancies.21

The results in this paper suggest that part of these unexplained shifts in matches (or,

equivalently, changes in the parameters of the matching functions) can be attributed to shifts

in the costs associated with vacancy creation and job search. For instance, equation (33)

21In this context, variation of matches means overall shifts in the number of matches, which includes both
cyclical fluctuations and the trend.
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shows that an increase in the cost parameters k, χ and γ, reduces equilibrium search intensity.

Therefore, in general, the total number of matches is given by

M(k, χ, γ, v, u) = A(k, χ, γ)vηu1−η, (40)

where A is a decreasing function of its arguments. As a result, the number of matches for a

given level of unemployment and vacancies can shift with these cost parameters.

Equation (40) has the following important implication. Cross-country data show that

there are substantial differences in unemployment across countries. Empirical studies have

tended to focus on whether taxes or benefits can explain these cross-country unemployment

differences; see, for example, Prescott (2004) and Ljungqvist and Sargent (2006). Time spent

on job search also differs substantially across countries. For example, according to Krueger

and Mueller (2010), an average unemployed worker spends 41 minutes a day searching for a

job in the U.S., compared with just 12 minutes in the average European country. The results

in this paper suggest that differences in time spent on job search, or equivalently, differences

in search or vacancy creation costs, may account for a substantial part of the cross-country

differences in unemployment.

7 Conclusion

Shimer (2005) showed that the DMP model of search and unemployment underpredicts

the standard deviation of key labor market variables – namely vacancies, unemployment

and the vacancies-unemployment ratio – by an order of magnitude; see also Andolfatto

(1996) and Merz (1995). This observation motivated looking at two modifications to the

textbook DMP model. The first and most important modification was to add worker search

intensity, allowing workers to directly affect the outcome of their job search. The second

change was more innocuous: dropping Nash bargaining determination of wages in favor

of competitive search (a combination of wage posting and directed search). An important
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advantage of using competitive search is that the allocations are efficient. In contrast, under

Nash bargaining, allocations are efficient only under the Hosios (1990) condition: the value

of the worker’s bargaining parameter equals the elasticity of the matching function with

respect to unemployment.

The benchmark model predicts standard deviations for unemployment and the vacancies-

unemployment ratio that are 70% of that seen in the U.S. data; for vacancies, the model

captures nearly 80% of the observed volatility. Almost all of the improvement with respect

to the variability of unemployment – and about half of that for the vacancies-unemployment

ratio – can be traced to the introduction of endogenous worker search effort. The volatility

of vacancies is not much affected by worker search intensity.

When the model is recalibrated to match the observed volatility of the vacancies-unemploy-

ment ratio, the model also captures virtually all of the variability in unemployment and

vacancies. The principal differences relative to the benchmark calibration are: (1) a lower

cost of posting vacancies, (2) a smaller weight on vacancies in the matching function, and

(3) a smaller curvature parameter on the cost of worker search intensity. This curvature

parameter is directly related to the elasticity of search effort with respect to unemployment

benefits. For this calibration, this elasticity is larger (in absolute value) than the estimates

in Krueger and Mueller (2010), but is nonetheless within a 95% confidence of their smallest

(in absolute value) point estimate.

To date, endogenous worker search effort has been largely overlooked when estimating

the matching technology; a notable exception is Yashiv (2000). Section 6 shows that this

omission can lead to an overestimate, by a factor of 2.5, of the effects on job matching

of an increase in vacancies. This problem is not merely of academic interest since it has

implications for public policies aimed at reducing unemployment. The results also suggest

that when wages are determined by Nash bargaining, choosing the bargaining power of

workers based on estimates of matching functions alone is premature and cannot always

guarantee constrained efficiency.
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The model can also be used to analyze cross-country differences. Krueger and Mueller

(2010) report that time spent on job search is much higher in the U.S. than in Europe. On

the other hand, it is well known that unemployment is substantially lower in the U.S. than

in Europe. Since the model establishes a negative correlation between time spent on job

search and unemployment in an equilibrium framework, it may be interesting to use the

model to examine whether cross-country differences in worker search costs can account for

the cross-country differences in unemployment.
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A Model with variable search intensity

A.1 The definition of the labor market equilibrium

Since unemployed workers are intrinsically identical, it follows that U(p) is common to all

unemployed workers. Further, Ũ(w, p) must be the same for all jobs for which workers

actually search. It then follows that the queue length, qw,p, must be unique for all jobs

with positive worker search: The compensation for searching for a lower wage job is a

higher probability of being matched, that is, a lower queue length. Using equations (3)

and (4), it can be seen that search intensity, sw,p, must also be unique for each job type

(w, p). Introducing the following functions, s(w, p) = sw,p, q(w, p) = qw,p, v(w, p) = vw,p,

u(w, p) = uw,p and S(w, p) = Sw,p for any (p, w) such that w ∈ W(p), the labor market

equilibrium can now be defined.

Definition A.1. The equilibrium is a set of value functions, {U,W, J, V }, a decision rule

s, wage sets W, the measures, {u, v}, the total search intensity, S, and the queue length, q,

such that

1. unemployed: given q and W , the decision rule s(w, p) and the value functions U(p)

and Ũ(w, p) solve equations (3) and (4) for any w ∈ W(p);

2. employed: given U , the value function W (w, p) solves equation (5);

3. matched firm: the value function J(w, p) solves equation (6);

4. vacancy: given q and J , the wage w and value function V (p) solve equation (7) with

w ∈ W(p);

5. free entry: for any real number x,


v(x, p) > 0 and V (p) = 0 if x ∈ W(p),

v(x, p) = 0 and V (p) ≤ 0 if x 6∈ W(p) or W(p) = ∅; and

(A.1)

6. consistency: the total search intensity S and the queue length q are consistent with
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individuals’ and firms’ behavior: S(w, p) = u(w, p)s(w, p) = v(w, p)q(w, p) for w ∈

W(p).

A.2 Workers

Let EpX(p′) denote the expected value of an arbitrary variable X conditional on the current

state p. Then, the value of being employed with wage w can be written as

W (w, p) =
w

1− β(1− λ)
+EpK(p′) (A.2)

where K is given by the following recursive equation conditional on U :

K(p) = βλU(p) + β(1− λ)EpK(p′). (A.3)

Then, it can be seen that EpW (w, p′)− w
1−β(1−λ) does not vary with w. Thus, let

D(p) = EpW (w, p′)−EpU(p′)− w

1− β(1− λ)
. (A.4)

A worker will take the queue length q = S/v as given. The first-order condition with respect

to search intensity, s, in equation (4) is

c′(s) = βf(q)(D(p) +
w

1− β(1− λ)
) (A.5)

which can be rewritten as

w

1− β(1− λ)
+D(p) =

c′(s)

βf(q)
. (A.6)
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A.3 Firms

Let Z(p) denote the value of the expected output streams of a firm when the current state

is p:

Z(p) = p+ β(1− λ)EpZ(p′). (A.7)

Furthermore, let y(p) = (1− β(1− λ))EpZ(p′). Then, equation (6) can be rewritten as

V (p) = max
w
{−k + βα(q)

y(p)− w
1− β(1− λ)

}. (A.8)

Analogous to Rogerson et al. (2005), substituting equation (A.6) into equation (A.8) and

taking the first-order condition with respect to q yields

y(p)

1− β(1− λ)
+D(p) =

c′(s)

βα′(q)
. (A.9)

Combining equations (A.6) and (A.9) gives

y(p)− w
1− β(1− λ)

=
c′(s)

β

(
1

α′(q)
− 1

f(q)

)
. (A.10)

The left hand side is simplyEpJ(p′, w). Therefore, the free entry condition k = βα(q)EpJ(p′, w)

implies that

k = c′(s)α(q)

(
1

α′(q)
− 1

f(q)

)
. (A.11)

Since α(q)/α′(q) = q/(1− η) and α(q)/f(q) = q under the Cobb-Douglas matching function

(see equation (2)), it follows that

k =
η

1− η
c′(s)q. (A.12)
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Substituting the latter into equation (A.9) for q, it can be shown that

y(p)

1− β(1− λ)
+D(p) =

kη

βµηη(1− η)1−η
(c′(s))1−η. (A.13)

A.4 Proof of Proposition 3

Given productivity p, the left hand side of equation (A.13) is unique among unemployed

workers. Thus, the strict convexity of c(s) will imply that every unemployed worker will

search with same intensity. Then, given p, equation (A.12) implies that q is unique.

A.5 Algorithm

Given the results above, the following algorithm is used to solve the stochastic dynamic

model with variable search intensity:

1. Calculate y(p) using equation (A.7).

2. Form a guess on D(p).

3. Find s using equation (A.13).

4. Using equation (A.12), find q.

5. Using equation (A.10), find w.

6. Using q, w and s, calculate U(p) and W (w, p). Also calculate EpU(p′) and EpW (w, p′).

7. Using the expected values and w, calculate D(p) according to equation (A.4).

8. Iterate until the gap between the initial guess and the updated value of D(p) is suffi-

ciently small.

Given the equilibrium values of f̃(p), unemployment at time t is given recursively by ut+1 =

(1− λ)ut + f̃(pt)(1− ut).
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A.6 Elasticity of wages with respect to productivity

Given productivity p, Proposition 3 implies that the expected present discounted value of

the wage stream of new matches is unique. Let Y (p) denote this unique value. Then, under

the assumption that the wage of a particular match does not change over time, the wage of

new matches is given by

w(p) = (1− β(1− λ))Y (p). (A.14)

For the benchmark calibration, the elasticity of w(p) with respect to productivity is εw,p =

0.472; this value is comparable to the one targeted by Hagedorn and Manovskii (2008). Since

most of the matches are old, the elasticity of the average wage in the model economy must be

much smaller. In fact, under the assumption of constant within-match wages, the elasticity

of the average wage with respect to productivity is ε̂w,p = 0.041.

Suppose instead that the wages of old matches are allowed to evolve over time. Specifi-

cally, let the wages of all matches, new or old, be the same and respond to each aggregate

shock. Let w̃ be the wage determined in such a way. Then, it can be seen that

Y (p) = w̃(p) + β(1− λ)EpY (p′). (A.15)

Combining the latter with equation (A.14) gives

w̃(p) =
1

1− β(1− λ)
(w(p)− β(1− λ)Epw(p′)) . (A.16)

In this case, the elasticity of w̃ with respect to productivity is ε̃w,p = 0.967. Therefore,

depending on how frequently wages of old matches are renegotiated after each aggregate

shock, the elasticity of the average wage with respect to productivity ranges from 0.041 to

0.967.22

22This range is for the benchmark model. For the calibration that matches the volatility of the vacancies-
unemployment ratio, the measured elasticities do not differ substantially; specifically, εw,p = 0.478, ε̂w,p =
0.041 and ε̃w,p = 0.979.
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B Model with fixed search intensity

B.1 Workers

When search intensity is fixed at one, the flow utility of unemployment becomes

z̃ = z − c(1).

Then, the value of being unemployed is given by

U(p) = z̃ + βf(q) (EpW (w, p′)−EpU(p′)) + βEpU(p′). (B.1)

The value of being employed is as before:

W (w, p) = w + β(1− λ)EpW (w, p′) + βλEpU(p′). (B.2)

Given U , let K be given by the recursive equation (A.3). Let

H(p) = Ep(Ep′K(p′′))−EpU(p′). (B.3)

Then, equation (B.1) can be written as

U(p) = z̃ + βf(q)

(
w

1− β(1− λ)
+H(p)

)
+ βEpU(p′). (B.4)

Therefore, for any posted wage w ∈ W(p),

w

1− β(1− λ)
+H(p) =

U(p)− z̃ − βEpU(p′)

βf(q)
. (B.5)
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B.2 Firms

As in Rogerson et al. (2005), substituting equation (B.5) into equation (A.8) for w and taking

the first order condition with respect to q yields

y(p)

1− β(1− λ)
+H(p) =

U(p)− z̃ − βEpU(p′)

βα′(q)
. (B.6)

Combine equations (B.5) and (B.6) to obtain

y(p)− w
1− β(1− λ)

=
η

µβ(1− η)
(U(p)− z̃ − βEpU(p′)) qη. (B.7)

Combining this result with the free entry condition,

1− η
η

k = (U(p)− z̃ − βEpU(p′)) q. (B.8)

B.3 Algorithm

Using the results above, the following algorithm is used to solve the model under fixed search

intensity:

1. Calculate y(p).

2. Form a guess on U(p).

3. Calculate EpU(p′).

4. Find q using equation (B.8).

5. Using equation (B.7), find w.

6. Using q and w, calculate U(p). Iterate until the gap between the initial guess and the

updated value of U(p) is sufficiently small.
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B.4 Elasticity of the vacancy-unemployment ratio with respect to

productivity

In the absence of the aggregate shock, equation (A.3) converts into

K =
βλ

1− β(1− λ)
U. (B.9)

Therefore, equation (B.3) becomes

H = − 1− β
1− β(1− λ)

U. (B.10)

Then, using these equations, the equilibrium conditions given by equations (B.6) and (B.8)

can be rewritten as

p− (1− β)U

1− β(1− λ)
=

(1− β)U − (z − c(1))

βα′(q)
(B.11)

and

1− η
η

k

q
= (1− β)U − (z − c(1)), (B.12)

respectively. Note that equation (B.11) uses the fact that y(p) = p under permanent shock.

Combining these two equations and that q = 1/θ, one can arrive at

p− (z − c(1)) =
1− η
η

k

(
θ +

1− β(1− λ)

βµ(1− η)
θ1−η

)
. (B.13)

As before, by taking logs and differentiating the result with respect to ln p while taking into

account the steady-state normalization θ = 1 and the fact that η̃ = η,

εFθ,p =
∂ ln θ

∂ ln p
=

1 + 1
1−η̃

1−β(1−λ)
βµ

1 + 1−β(1−λ)
βµ

× p

p− (z − c(1))
. (B.14)
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