
Evolutionary Programming as a Solution Technique for
the Bellman Equation∗

Paul Gomme
Federal Reserve Bank of Cleveland, P.O. Box 6387, Cleveland, OH 44101–1387,
Simon Fraser University, Burnaby, B.C., V5A 1S6, CANADA, and
CREFE/UQAM, Case postale 8888, succursale centre-ville, Montréal, Québec, H3C 3P8,

CANADA
gomme@sfu.ca

First Draft: April 1996
This Draft: October 1997

Abstract: Evolutionary programming is a stochastic optimization procedure which has
proved useful in optimizing difficult functions. It is shown that evolutionary programing
can be used to solve the Bellman equation problem with a high degree of accuracy and
substantially less CPU time than Bellman equation iteration. Future applications will
focus on sometimes binding constraints – a class of problem for which standard solutions
techniques are not applicable.

Keywords: evolutionary programming, bellman equation, value function, computational
techniques, stochastic optimization

∗The financial support of the Social Sciences and Humanities Research Council (Canada)
is gratefully acknowledged. The views stated herein are those of the author and are not
necessarily those of the Federal Reserve Bank of Cleveland or of the Board of Governors
of the Federal Reserve System.

1

1. Introduction
Stochastic optimization algorithms, like evolutionary programming, genetic algorithms

and simulated annealing, have proved useful in solving difficult optimization problems.

In this context, a difficult optimization problem might mean: (1) a non-differentiable

objective function, (2) many local optima, (3) a large number of parameters, or (4) a large

number of configurations of parameters.1 Thus far, there are few economic applications of

such procedures, with most attention has focused on genetic algorithms; see, for example,

Arifovic (1995, 1996). This paper explores the potential of evolutionary programming as

a solution procedure for solving Bellman equation (value function) problems.

Whereas genetic algorithms include a variety of operators (for example, mutation,

cross-over and reproduction), evolutionary programs use only mutation. As such, an evo-

lutionary program can be viewed as a special case of a genetic algorithm. The basics of

evolutionary programming can be described as follows. Let X ∈ IRn be the parameter

space and let xi ∈ X denote candidate solution i ∈ {1, . . . ,m}. If the objective function

is f :X → IR, then f(xi) is the evaluation for element i. Given some initial population,

{xi}mi=1, proceed as follows:

(1) Sort the population from best to worst according to the function f .

(2) For the worst half of the population, replace each member with a corresponding member

in the top half of the population, adding in some ‘random noise.’

(3) Re-evaluate each member according to f .

(4) Repeat until some convergence criterion is satisfied.

The ‘noise’ added in step (2) helps the evolutionary program to escape local minima

and at the same time explore the parameter space. As the amount of noise in step (2)

is reduced, the evolutionary program will typically converge to a solution arbitrarily close

to the optimum. Properties of evolutionary programs have been explored by a number of

authors including Fogel (1992).

There are a number of complications which arise in applying an evolutionary program

to the Bellman problem. The most important complication is that the algorithm must solve

1 A classic example is the traveling salesman problem in which a salesman wishes to
minimize the distance traveled in visiting a set of N cities.

2

for the objective function. That is, for the typical evolutionary program, the function f

above is known. Here, the value function, which depends on the state, is unknown a priori

and the solution algorithm must solve for the value function—which is also the ‘fitness’

criterion used to evaluate candidate solutions.

The basics of the algorithm are discussed in Section 2. The specific application is the

neoclassical growth model. In the most basic version of the model, the parameters to

choose are next period’s capital stock (as a function of this period’s capital stock). These

are restricted to lie in a discrete set. For problems with a large number of capital stock

grid points, it is shown that the evolutionary program delivers decision rules arbitrarily

close to the known solution, and does so much faster than Bellman equation iteration; see

Section 3. Also in Section 3, the performance of the evolutionary program is evaluated

when a labor-leisure choice is introduced. For large problems, the evolutionary program is

again substantially faster than Bellman equation iteration. Section 4 concludes.

2. The Problem and Algorithm
The specific application is the neoclassical growth model:

max
{ct, kt+1}∞t=0

E0

{ ∞∑
t=0

βt ln ct

}
, 0 < β < 1 (1)

subject to

ct + kt+1 = ztk
α
t + (1− δ)kt, 0 < δ, α < 1, t = 0, 1, . . . (2)

where ct is consumption, kt is capital, zt a technology shock, U a well-behaved utility

function, and F a well-behaved production function. The associated Bellman equation

(value function) is:

V (kt, zt) ≡
max

{ct, kt+1}
{ln ct + βEtV (kt+1, zt+1)} (3)

subject to (2). One way to solve this problem is via Bellman equation iteration: given

some initial guess V0(kt, zt), iterate on (3) as

Vj+1(kt, zt) ≡
max

{ct, kt+1}
{ln ct + βEtVj(kt+1, zt+1)} subject to (2) (4)

until either the decision rules converge, or the value function converges. To implement this

procedure computationally, the capital stock is restricted to a grid, K = {k1, k2, . . . , kNK}.

3

The technology shock is likewise restricted to Z = {z1, z2, . . . , zNZ}. zt is assumed to follow

a Markov chain:

prob{zt+1 = zj |zt = zi} = φij . (5)

When there is 100% depreciation (δ = 1), a closed-form solution can be obtained:

kt+1 = αβztk
α
t (6a)

ct = (1− αβ)ztkαt . (6b)

These known solutions will be useful in evaluating the performance of the evolutionary

program.

The biggest problem with Bellman equation iteration is the curse of dimensionality:

large capital stock grids or additional endogenous state variables make the maximization

in (4) computationally expensive. In many ways, the problem as set out in (4) looks like

a natural application for an evolutionary program: for each of the NK ×NZ grid points

in the state space, there are NK potential values for kt+1. While Vj(kt, zt) is known at

iteration j, the limiting value function,

V (kt, zt) ≡
lim

j →∞
Vj(kt, zt) (7)

is generally unknown. If V (kt, zt) were known, this would be a straightforward evolutionary

program application. However, the algorithm must also iterate on Vj(kt, zt) to obtain an

approximation to V (kt, zt). It is this iteration which distinguishes the neoclassical growth

model from the typical evolutionary program application.

At each iteration in (4), there is a solution for next period’s capital stock,

kt+1 = Kj(kt, zt) ∈ K. (8)

Rather than obtain this by maximization, suppose one were to ‘guess’ a set of solutions,

kt+1 = Ki(kt, zt) ∈ K, i ∈ {1, 2, . . . ,m}. (9)

For each i ∈ {1, 2, . . . ,m} can be computed

V i(kt, zt) = ln ct + βEtVj(Ki(kt, zt), zt+1) (10)

4

where

ct = ztk
α
t + (1− δ)kt −Ki(kt, zt). (11)

For each i, this results in NK ×NZ numbers (one for each of the grid points for the state

space). So that each guess has as scalar value associated with it, compute

V
i

=
1

NK ×NZ
∑
kt∈K

∑
zt∈Z

V i(kt, zt). (12)

Next, sort the guesses such that

V
1
> V

2
> · · · > V

m
. (13)

At the next iteration, elements i ∈ {m/2 + 1, . . . ,m} will be replaced as follows:

Ki(kt, zt) = kp ∈ K (14)

where

p = max[min[q + INT(x), NK], 1], (15)

q is the index to the capital stock grid point corresponding to Ki−m/2(kt, zt), INT takes the

integer portion of of a real number, and x is a random number drawn from N(0, σ2). The

procedure in (14) is repeated for each kt ∈ K and for each zt ∈ Z. A new random number

x is drawn for each grid point. The upshot of this procedure is to replace the worst half

of the population of guesses with the best half, plus some noise.

How should Vj(kt, zt) be updated for the next iteration? In the spirit of the maximiza-

tion in (4), let

Vj+1(kt, zt) =
max

i ∈ {1, . . . ,m}
[V i(kt, zt)], for each kt ∈ K and zt ∈ Z. (16)

Another alternative would have been to have set Vj+1(kt, zt) = V 1(kt, zt) (the value func-

tion for the best guess). As a practical matter, the maximization in (16) speeds conver-

gence.

In experimenting with the algorithm, it was prudent to replace guess Km/2(kt, zt) with

the rule which implements the maximum in (16). Since this replaces the worst guess in the

top half of the population, it does not overwrite a particularly good guess. Further, if the

replacement is a bad thing to do, the value associated with this rule will presumably place

5

it in the bottom half of the population next iteration, and it will be discarded. Intuitively,

this is like performing the maximization associated with Bellman equation iteration, but

checking only a small subset of the possible values for next period’s capital stock. Again,

as a practical matter, this replacement greatly speeds convergence.

To finish this section, the evolutionary program will be summarized.

(1) Generate an initial guess for the value function, V0(kt, zt), and a population of candidate

solutions, {Ki(kt, zt)}mi=1 for kt ∈ K and zt ∈ Z. Also, set an initial value for σ which

governs the amount of ‘noise’ introduced to decision rules when they are copied.

(2) For each rule i ∈ {1, 2, . . . ,m}, compute V i(kt, zt) via (10) and (11), and compute V
i

using (12).

(3) Sort the population as in (13).

(4) Compute Vj+1(kt, zt) using (16). Replace rule m/2 with that which would achieve this

maximum.

(5) Replace the bottom half of the population with perturbed members of the top half of

the population as described in (14).

(6) Repeat (2)–(5) until converge is achieved, or a prespecified number of iterations are

completed.

(7) Reduce σ (the amount of experimentation).

(8) Repeat (2)–(7) until σ is sufficiently small.

3. Calibration and Results
In this section, the evolutionary program is compared to Bellman equation iteration

both in terms of accuracy and computational requirements. Two major cases are consid-

ered: with and without a labor-leisure choice. Subcases are presented for closed-form vs.

nonclosed-form, and stochastic vs. nonstochastic technology shocks (zt).

6

3.1. No Labor–Leisure Choice

Table 1 presents parameter values common to all experiments in this section. For

the most part, these are values typically used in the real business cycle literature; see,

for example, Prescott (1986). The capital stock grid was specified as a set of evenly

spaced points on the interval [k, k]; the upper and lower bounds on the capital stock were

chosen such that the ergodic set for capital was strictly contained in [k, k]. The set for the

technology shock was specified as having two points:

Z = {z, z}.

The technology shock evolves as:

prob[zt+1 = z|zt = z] = prob[zt+1 = z|zt = z] = π.

The transition probability, π, and values for z and z were chosen to match the properties

of Solow residuals as reported in Prescott (1986).

Parameter Description Value

α capital’s share of income 0.36
β discount factor 0.99
k lower bound for capital grid 1/4 × steady state
k upper bound for capital grid 2 × steady state
z lower bound for technology shock e−0.00763

z upper bound for technology shock e0.00763

π persistence of technology shock 0.975

Table 1: Parameter values used in computational exercises.

In terms of initial conditions,

V0(kt, zt) = 0 ∀kt, ∀zt, (17)

and

Ki(kt, zt) = k ∀kt, ∀zt, ∀i. (18)

7

Figure 1: CPU time for closed-form case.

(18) ensures that consumption is always positive for the initial guesses.2 σ, which governs

the amount of experimentation in the evolutionary program, starts at NK/10. Its value is

halved at each step (7) (see the end of Section 2) until its value is less than 0.1. Iterations

leading to step (7) continue until there has been no change in the decision rule generating

the best solution for 20 iterations, or until a total of 50 iterations have been completed.

Table 2: Results for the closed-form case: δ = 1.

Nonstochastic Stochastic
Grid Evolutionary Bellman Evolutionary Bellman

Points Program Iteration Program Iteration

100 1.3 0.6 2.7 1.4
200 2.8 2.5 6.0 6.0
500 8.9 16.9 20.8 38.5

1,000 22.1 1:10.6 52.6 2:39.5
2,000 56.7 5:12.1 2:09.4 11:21.5
5,000 2:58.1 31:24.1 6:58.8 1:40:23.9

10,000 6:48.9 2:11:11.3 15:33.9 6:08:11.8

Notes: In all cases, the solutions were within one grid point of the known
solutions given in (6a) and (6b). Reported CPU time is the user time
reported by the Unix time command on a SPARCstation 20 with a 100
MHz HyperSPARC chip.

2 For the evolutionary program, positive consumption cannot be guaranteed at future
stages. When a rule specifies nonpositive consumption, the value function at that grid
point evaluates to −1010.

8

Results for the case in which a closed-form solution is available are reported in Table 2;

these results are summarized in Fig. 1. Both the evolutionary program and Bellman

equation iteration successfully solved this case in that the final solutions were within one

grid point of the known solution. For moderate sized grids (up to 200 grid points for

capital), Bellman equation iteration is actually faster than the evolutionary program. This

ranking is reversed for large grids. For example, with 10,000 grid points, the evolutionary

program is more than 20 times faster than Bellman equation iteration. These differences

matter: when the technology shock is stochastic, the evolutionary program solves in under

16 minutes while Bellman equation iteration takes over 6 hours.

Table 3: Results for δ = 0.025 (no closed form solution).

Nonstochastic Stochastic
Grid Evolutionary Error Bellman Evolutionary Error Bellman

Points Program Iteration Program Iteration

100 1.7 1 1.8 4.5 2 5.1
200 4.0 2 8.1 8.9 3 20.4
500 11.7 2 1:02.1 30.3 6 2:35.3

1,000 28.8 3 4:42.7 1:04.2 0 13:31.4
2,000 1:07.3 2 21:05.0 2:30.6 2 56:47.5
5,000 3:23.1 3 2:47:48.4 7:50.7 0 7:38:30.7

10,000 7:44.6 3 11:31:33.9 17:26.7 1 30:51:47.5

Notes: Reported CPU time is the user time reported by the Unix time
command on a SPARCstation 20 with a 100 MHz HyperSPARC chip. ‘Er-
ror’ is the number of grid points at which the evolutionary program and
Bellman equation iteration differ.

Also of interest is the case for which a closed-form solution is not available since this

is the situation which typically confronts the researcher. Table 3 summarizes the results

for this case (see Fig. 2 for a graphical presentation). Qualitatively , the same message

emerges: for a large number of grid points, the evolutionary program clearly dominates

in terms of CPU time. Quantitatively , the differences are even larger than before. In the

stochastic case with 10,000 capital stock grid points, the evolutionary program finishes in

less than 18 minutes while Bellman equation iteration takes over 30 hours – over 100 times

longer. Both algorithms give nearly the same decision rules for capital accumulation: the

9

Figure 2: CPU time for δ = 0.025 (no closed form solution).

maximum number of grid points which differ is 6 (for the stochastic case with 500 capital

stock grid points). For a particular grid point, the two algorithms never differed by more

than one grid point.

3.2. Labor–Leisure Choice

There are two reasons to be interested in this case. First, endogenous labor supply

decisions are important for generating business cycle moments in the real business cycle

literature. Second, the evolutionary program can be given a further workout by requiring

that it solve for labor as well.3

The representative agent’s problem in this case is:

max
{ct, nt, kt+1}

E0

{ ∞∑
t=1

βt[ω ln ct + (1− ω) ln(1− nt)]

}
, 0 < β, ω < 1 (19)

subject to

ct + kt+1 = ztk
α
t n

1−α
t + (1− δ)kt, 0 < δ, α < 1, t = 0, 1, . . . (20)

where, in addition to the earlier variables, nt is the fraction of time spent working. When

δ = 1, the decision rules are:

kt+1 = αβztk
α
t n

1−α
t , (21a)

ct = (1− αβ)ztkαt n
1−α
t , (21b)

3 An alternative, used in Bellman equation iteration, is to use an Euler equation to solve
for labor supply.

10

and

nt =
ω(1− α)(1− αβ)

ω(1− α)(1− αβ) + 1− ω
. (21c)

The parameter values are the same as before, with the addition that ω = 0.33. In imple-

menting Bellman equation iteration, the solution for time spent working, nt, is computed

using a one dimensional nonlinear equation solver which works on the Euler equation,

(1− α)ztkαt n
−α
t

(
ω

ct

)
=

1− ω
1− nt

, (22)

where ct is computed from (20). This step is computationally costly, but need only be

performed once for each of the NK × NK × NZ possible configurations (next period’s

capital stock, this period’s capital stock and this period’s technology shock).

Rather than use (22) to solve for labor, the evolutionary program is required to solve not

only for the capital accumulation decision but also labor decision supply. This should serve

to bias the results against the evolutionary program. σK will now be used to control the

amount of experimentation over the capital grid while σN will control the experimentation

with respect to the labor decision. As above, the initial value for σK is NK/10 while σN

starts at 0.1. The same convergence criteria are used as above. FORTRAN code to solve

this model is reproduced in Appendix A.

Table 4: Results for the closed-form case with endogenous labor supply.

Nonstochastic Stochastic
Grid Evolutionary Bellman Evolutionary Bellman

Points Program Iteration Program Iteration

100 8.3 6.3 16.3 13.4
200 22.2 26.3 43.0 56.1
500 1:05.7 2:52.7 2:19.8 6:00.2

1,000 2:34.1 11:54.8 5:24.6 24:16.8
2,000 5:58.3 51:36.3 13:00.0 1:37:59.8

Notes: In all cases, the solutions were within one grid point of the known
solutions given in (21a) and (21c). Reported CPU time is the user time
reported by the Unix time command on a SPARCstation 20 with a 100 MHz
HyperSPARC chip. The maximum error on the labor supply calculation
was less than 0.01%, with this figure decreasing with the number of capital
stock grid points.

11

Figure 3: CPU time for closed form case with endogenous labor supply.

Results for the closed-form case are presented in Table 4. Qualitatively, the results are

similar to before. For a small number of grid points, there is little difference between the

algorithms, with Bellman equation iteration typically completing in less time. However, for

a large number of grid points, the evolutionary program performs substantially better than

Bellman equation iteration. With no labor–leisure choice, the evolutionary program was

about 5 times faster than Bellman equation iteration for 2,000 grid points (see Table 2).

With a labor–leisure choice, the evolutionary program is over 8 times faster. These are not

differences of seconds, but rather of hours. Larger capital stock grids were not attempted

in this case due to the CPU and memory requirements for Bellman equation iteration.4

The earlier results suggest that for larger grid points, the CPU time advantage of the

evolutionary program would be substantial.

Finally, Table 5 summarizes the results for the case in which no closed form solution is

available. Compared to the case with inelastic labor supply, there is now a greater tendency

for the two algorithms to differ with respect to the capital decision rule. However, the two

algorithms are always within one grid point of each other. Compared to Table 4, Bellman

equation iteration takes over twice as much CPU time while the evolutionary program

actually takes slightly less. At 2,000 capital stock grid points, Bellman equation iteration

takes over 20 times more CPU time. Again, the differences are minutes versus hours.

4 Memory requirements increase since the labor supply decision is stored in memory to
speed Bellman equation iteration.

12

Table 5: Results for δ = 0.025 (no closed form is available).

Nonstochastic Stochastic
Grid Evolutionary Error Bellman Evolutionary Error Bellman

Points Program Iteration Program Iteration

100 7.0 4 12.8 16.1 9 30.5
200 17.5 2 1:00.5 37.3 9 2:06.1
500 1:01.1 15 6:38.5 1:53.2 15 16:11.1

1,000 2:18.6 18 31:01.0 4:50.5 26 1:09:09.4
2,000 5:22.9 27 2:19:53.7 11:15.6 50 4:26:55.6

Notes: Reported CPU time is the user time reported by the Unix time
command on a SPARCstation 20 with a 100 MHz HyperSPARC chip. ‘Er-
ror’ is the number of grid points at which the capital decision rules differ
for the two algorithms. Excluding these grid points, the maximum per-
centage difference of the labor supply decision is less than 0.01%, with this
difference declining with the number of grid points.

Figure 4: CPU time for δ = 0.025 (no closed form solution).

4. Conclusion
This paper described how to implement an evolutionary program to solve the Bellman

equation problem for the neoclassical growth model. A total of eight cases were considered:

with and without endogenous labor supply, constant versus stochastic technology shocks,

and when a closed form is or is not available. When closed form solutions are available,

both the evolutionary program and Bellman equation iteration deliver decision rules for

13

capital which are within one grid point of the known solution. When closed form solu-

tions are not available. the evolutionary program and Bellman equation iteration produce

decision rules which are quite close to each other. The most striking difference is in CPU

requirements: where the evolutionary program takes tens of minutes, Bellman equation

iteration takes hours. A stochastic technology shock substantially increases CPU time for

Bellman equation iteration but has little effect on the time required for the evolutionary

program. There is nothing in the evolutionary program algorithm which takes advantage

of the fact that the large state space is due to an increase in the number of grid points

for the endogenous state variable (capital). Thus, the results for, 10,000 grid points for

capital should closely approximate those which would be obtained with two endogenous

state variables, each with 100 grid points. This would be prohibitively expensive in terms

of CPU time for Bellman equation iteration, but can be solved in a relatively short time

using the evolutionary program

The neoclassical growth model was not the ultimate target for this exercise; there are

many solution algorithms for this model which are even faster.5 The neoclassical growth

model provides a benchmark to evaluate the accuracy of the algorithm. Useful applications

will be ones for which these other algorithms cannot be used. One such class of problem

is when constraints are not necessarily binding. For example, in the neoclassical growth

model one might impose a nonnegativity constraint on investment.6 This can be handled

above by making the current return to violating this constraint an arbitrarily large negative

number. Another example would be a cash-in-advance economy in which money growth

is at times sufficiently low that households wish to hold more money than is necessary to

satisfy their cash-in-advance constraint.

5 See, for example, King, Plosser and Rebelo (1987) and Hansen and Prescott (1995).
6 See Christiano and Fischer (1994).

14

References

Arifovic, Jasmina [1995]. “Genetic Algorithms and Inflationary Economies,” Journal of

Monetary Economics, Volume 36, pp. 219–243.

Arifovic, Jasmina [1996]. “The Behavior of the Exchange Rate in the Genetic Algorithm

and Experimental Economics,” Journal of Political Economy, Volume 104, pp. 510–

541.

Christiano, Lawrence J. and Jonas D.M. Fisher [1994]. “Algorithms for Solving Dy-

namic Models with Occasionally Binding Constraints,” Minneapolis: Federal Re-

serve Bank of Minneapolis, Research Department Staff Report 171.

Fogel, D.B. [1992]. “Evolving Artificial Intelligence,” Doctoral Dissertation, University of

California, San Diego.

Hansen, Gary D. and Edward C. Prescott [1995]. “Recursive Methods for Computing

Equilibria of Business Cycle Models,” in Frontiers of Business Cycle Research,

ed. Thomas F. Cooley, Princeton, New Jersey: Princeton University Press, pp. 39–

54.

King, Robert G., Charles I. Plosser, and Sergio T. Rebelo [1988]. “Production, Growth and

Business Cycles: I The Basic Neoclassical Model,” Journal of Monetary Economics,

Volume 21, pp. 195–232.

Prescott, Edward C. [1986]. “Theory Ahead of Business Cycle Measurement,” Federal

Reserve Bank of Minneapolis Quarterly Review , Volume 10, pp. 9–22.

15

Appendix A: FORTRAN Source Code

program EP4
integer NPOP, NK, NPOP2, NZ
parameter (NPOP=20, NK=10000, NZ=2)
integer ktemp(NK,NZ,NPOP), ik, ipop, converge, count,

$ idx(NPOP), kold(NK,NZ), cc, krule(NK,NZ,NPOP), iz, iiz
double precision alpha, beta, kstock(NK),

$ vstar(NK,NZ), ktrue(NK,NZ), temp, cons, util, delta, sdk,
$ v(NK,NZ,NPOP), ev(NPOP), z(NZ), rho(NZ,NZ), Evstar(NK,NZ),
$ sdn, ntrue, nrule(NK,NZ,NPOP), omega, ntemp(NK,NZ,NPOP),
$ RANMAR, GASDEV
external RANMAR, GASDEV

C
C Initialize random number generator and parameters.
C

call RMARIN(28460,12031)
alpha = 0.36d0
beta = 0.99d0
delta = 1d0
omega = 0.33d0
NPOP2=NPOP/2
temp = omega*(1d0-alpha)/(1d0-alpha*beta)
ntrue = temp / (temp + 1d0 - omega)

C
C Set up grids for the technology shock and capital stock.
C

z(1)=-0.00763d0
z(2)=-z(1)
z(1) = EXP(z(1))
z(2) = EXP(z(2))
temp = ((1d0/beta - 1d0 + delta)/(alpha*ntrue**(1d0-alpha)))

$ **(1d0/(alpha-1d0))
call LINSPACE(NK,kstock,0.25d0*temp,2d0*temp)

C
C Set up rho which governs the persistence in the technology shock.
C

rho(1,1) = 0.975d0
rho(1,2) = 1d0-rho(1,1)
rho(2,2) = rho(1,1)
rho(2,1) = rho(1,2)

C
C Initialize the decision rules.
C

do 1000 ik=1,NK
do 1000 iz=1,NZ

ktrue(ik,iz) = alpha*beta*z(iz)*kstock(ik)**alpha
$ *ntrue**(1d0-alpha)

vstar(ik,iz) = 0d0
Evstar(ik,iz) = 0d0
kold(ik,iz) = 0
do 1100 ipop=1,NPOP

krule(ik,iz,ipop) = 1

16

nrule(ik,iz,ipop) = 0.24d0
1100 continue
1000 continue

do 1500 ipop=1,NPOP
idx(ipop) = ipop

1500 continue
sdn = 0.05d0
sdk = DBLE(NK)*0.1d0
do 2000 while (sdk .gt. 0.1d0)

count = 0
converge = 1

C
C Two convergence criteria: Have the decision rules for capital
C changed recently (converge)? Has the algorithm spent "long
C enough" with this degree of experimentation?
C

do 2999 while ((converge .lt. 20) .and. (count .lt. 50))
count = count+1
do 2100 ipop=1,NPOP

ev(ipop) = 0d0
do 2110 ik=1,NK
do 2110 iz=1,NZ

C
C Copy decision rules.
C

ktemp(ik,iz,ipop) = krule(ik,iz,ipop)
ntemp(ik,iz,ipop) = nrule(ik,iz,ipop)

C
C For the worst half of the population, replace with a corresponding
C member of the best half, then peturb. There is a 50-50 chance
C of peturbing the capital decision rule, and so a 50-50 chance of
C peturbing the labour supply rule.
C
C The capital decision rule is, in fact, only changed with
C probability p. When changed, the rule can either go up or
C down by some random amount which is linear in the increment.
C
C The labour decision rule is peturbed using a Normal random
C number generator with the standard deviation being adjusted
C downward over time.
C

if (ipop .le. NPOP2) then
ktemp(ik,iz,ipop) = MAX(MIN(krule(ik,iz,ipop+NPOP2)

$ + INT(GASDEV()*sdk),NK),1)
ntemp(ik,iz,ipop) =

$ MAX(MIN(nrule(ik,iz,ipop+NPOP2)
$ + GASDEV()*sdn,1d0),0d0)

endif
2110 continue
2100 continue

do 2200 ipop=1,NPOP
do 2210 ik=1,NK
do 2210 iz=1,NZ

17

C
C Compute consumption, current period utility, the value of the
C current member at each grid point, and the "average" value
C of the current member.
C

cons = z(iz)*kstock(ik)**alpha*ntemp(ik,iz,ipop)
$ **(1d0-alpha) - kstock(ktemp(ik,iz,ipop))
$ + (1d0-delta)*kstock(ik)

if ((cons .gt. 0d0) .and.
$ (ntemp(ik,iz,ipop) .lt. 1d0)) then

util = omega*log(cons)
$ + (1d0-omega)*log(1d0-ntemp(ik,iz,ipop))

else
util = -1d10

endif
v(ik,iz,ipop) = util + Evstar(ktemp(ik,iz,ipop),iz)
ev(ipop) = ev(ipop) + v(ik,iz,ipop)

2210 continue
2200 continue

C
C Do a bubble sort of the "average" value of each member. Actually,
C keep track of an index to the "average" values rather than copy
C the decision rules back and forth; this step is performed (once)
C in the loop which follows.
C

call BSORT(ev, idx, NPOP)
do 2300 ipop=1,NPOP

do 2310 ik=1,NK
do 2310 iz=1,NZ

krule(ik,iz,ipop) = ktemp(ik,iz,idx(ipop))
nrule(ik,iz,ipop) = ntemp(ik,iz,idx(ipop))

2310 continue
2300 continue

C
C vstar is the BEST v across members of the population. It speeds
C the algorithm to keep track of the decision rule which implement
C vstar at each grid point (point in the state space). This rule
C is stored in the place of the worst member in the top half of
C the population (i.e., the part which is kept).
C
C Two notes.
C
C (1) The computation of vstar is in the spirit of value function
C iteration except that rather than take a maximum over all possible
C values of next period capital, the maximum is over all members of
C the population.
C
C (2) There seems to be little harm in saving the decision rule
C which attains the maximum over members of the population at each
C grid point since it will be discarded in the next round if this
C turns out to be a bad decision rule.
C

do 2400 ik=1,NK

18

do 2400 iz=1,NZ
vstar(ik,iz) = v(ik,iz,1)
krule(ik,iz,NPOP2+1) = ktemp(ik,iz,1)
nrule(ik,iz,NPOP2+1) = ntemp(ik,iz,1)
do 2410 ipop=2,NPOP

if (v(ik,iz,ipop) .gt. vstar(ik,iz)) then
vstar(ik,iz) = v(ik,iz,ipop)
krule(ik,iz,NPOP2+1) = ktemp(ik,iz,ipop)
nrule(ik,iz,NPOP2+1) = ntemp(ik,iz,ipop)

endif
2410 continue
2400 continue

C
C Do some calculations to check for convergence.
C

cc = 0
do 2500 ik=1,NK
do 2500 iz=1,NZ

cc = cc + abs(kold(ik,iz)-krule(ik,iz,NPOP))
kold(ik,iz) = krule(ik,iz,NPOP)
Evstar(ik,iz) = 0d0
do 2510 iiz=1,NZ

Evstar(ik,iz) = Evstar(ik,iz) +
$ beta*rho(iz,iiz)*vstar(ik,iiz)

2510 continue
2500 continue

if (cc .eq. 0) then
converge = converge + 1

else
converge = 0

endif
2999 continue

write(6,*) count, sdk, sdn, converge
sdn = sdn / 2d0
sdk = sdk / 2d0

2000 continue
open(unit=55, file=’ep4-10000.dat’, status=’unknown’)
temp = -1d0
do 9000 ik=1,NK

write(55,10) kstock(ik), ktrue(ik,1), kstock(krule(ik,1,NPOP)),
$ ktrue(ik,2), kstock(krule(ik,2,NPOP)),
$ ntrue, nrule(ik,1,NPOP), nrule(ik,2,NPOP)

temp = MAX(temp,ktrue(ik,1)-kstock(krule(ik,1,NPOP)))
temp = MAX(temp,ktrue(ik,2)-kstock(krule(ik,2,NPOP)))

9000 continue
close(55)
write(6,*) temp/(kstock(2)-kstock(1))

10 format(8(1x,f20.10))
stop
end

C===
C A bubble sort routine. This sorts the "average" value of members
C of the population, but does so on an index to these members

19

C rather than copying decision rules back and forth several times.
subroutine BSORT(value, index, NN)
integer NN, index(NN), p, swap, temp
double precision value(NN)

1 swap = 0
do 1000 p=1,NN-1

if (value(index(p)) .gt. value(index(p+1))) then
swap = 1
temp = index(p+1)
index(p+1) = index(p)
index(p) = temp

endif
1000 continue

if (swap .gt. 0) goto 1
return
end

C===
C Used to initialize various grids. Generates a series of evenly
C spaced grid points between start and end.

subroutine LINSPACE(N, series, start, end)
integer N, i
double precision series(N), start, end
do 1000 i=1,N

series(i) = start + (end-start)*DBLE(i-1)/DBLE(N-1)
1000 continue

return
end

C===
C Generator of Normally distributed random numbers which mean 0
C and standard deviation of 1.

double precision function GASDEV()
implicit complex (a-z)
integer iset
double precision v1, v2, r, fac, gset, RANMAR
external RANMAR
data iset /0/
if (iset .eq. 0) then

1 v1 = 2d0 * RANMAR() - 1d0
v2 = 2d0 * RANMAR() - 1d0
r = v1**2 + v2**2
if (r .ge. 1d0) goto 1
fac = sqrt(-2d0*log(r)/r)
gset = v1*fac
GASDEV = v2*fac
iset = 1

else
GASDEV = gset
iset = 0

endif
return
end

	Cover Page
	Introduction
	The Problem and Algorithm
	Calibration and Results
	No Labor-Leisure Choice
	Table: Parameters
	Table: Results For Closed-Form Case
	Figure: CPU Time For Closed-Form Case
	Table: Results For Case With No Closed-Form Solution
	Figure: CPU Time For Case with No Closed-Form Solution

	Labor-Leisure Choice
	Table: Results For Closed-Form Case
	Figure: CPU Time For Closed-Form Case
	Table: Results For Case With No Closed-Form Solution
	Figure: CPU Time For Case with No Closed-Form Solution

	Conclusion
	FORTRAN Source Code

